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Arginine (Arg) based carbon dots (CDs) in the 
size range 0.5-10 nm as Arg-CD via microwave 

technique were prepared and were treated with 
HCl acid to protonate the amine groups on the 
structure, as Arg-CD+. The surface charge of Arg-
CD was increased to +21±1.2 mV for Arg-CD+ from 
+2.8±0.5 mV.  It was found that the Arg-CD+ showed 
better catalytic activity than Arg-CD as catalyst in 
the methanolysis of NaBH4 with higher hydrogen 
generation rate (HGR), 2534±128 mL H2 x (gcat x min)-
1 at 25oC. The Arg-CD+ catalyzed methanolysis of 
NaBH4 exhibited an HGR of 3233±151 mL H2 x (gcat 

x min)-1 at 40oC. Furthermore, the activation energy 
values for and Arg-CD+ in comparison to Arg-CD for 
the catalytic methanolysis of NaBH4 was significantly 
decreased e.g., 10.9 kJ/mol versus 20.6 kJ/mol. 
Additionally, the a 50% activity was determined for 
Arg-CD+ catalysts after five consecutive uses in 
methanolysis of NaBH4 was almost recovered 100% 
recovered upon regeneration with a simple HCl acid 
treatment of the catalyst. The regeneration ability of 
Arg-CD+ catalysts afforded 25 consecutive, effective, 
repetitive uses in methanolysis of NaBH4 with more 
than 50% activity after every five cycles. 
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used to produce H2 from NaBH4 reactions 
as catalysts.8,17.

Carbon based materials are also widely 
used as catalyst for NaBH4 reaction in various 
solvents such as water or alcohol.18–20 Active 
carbon, porous carbon, carbon nanotubes, 
graphitic carbon nitride (g-C3N4) et al., were 
intensively investigated as catalysts in dif-
ferent morphologies (porous, bulk etc.) and 
formulations (metal nanoparticle compos-
ites, doped, modified etc.) NaBH4 reaction in 
various solvents such as water or alcohol to 

efficient than other fuels and has maximum 
energy content; for example, the energy 
content of H2 is about 3 times the energy 
content of gasoline.1 With the development 
of devices that use hydrogen as a fuel or 
energy source, there has been a need for 
carrier and storage systems.7,8 In recent 
studies, various metal borohydrides (NaBH4, 
LiBH4, and NH3BH3)9–16 have been widely 
used as H2 storage materials to produce H2. 
Moreover, various catalysts including metal 
nanoparticles and metal-free ones were also 

1. Introduction
Hydrogen (H2) as an element is the lightest 

one in the periodic chart 1 and is the most 
commonly found element on Earth.2 H2 is 
regarded as a renewable energy source 
because it is clean, safe for the environment, 
carbon-free, and has an effective energy 
carrier.3 H2 is an alternative to replace fossil 
fuels because of the worldwide ecological 
effect of petroleum-based energy use and 
raising energy consumption and require-
ments.2,4–6 At the same time, H2 is more 
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amine-rich starting material amino acid, argi-
nine (Arg). Arg contains 3 moles of primary, 
and 1 mole of secondary amine groups 
per 1 mol of Arg molecule. Previously, the 
prepared Arg-CDs and its’ metal nanopar-
ticle composite were used for enhanced 
antibacterial activity,30 and the augmentation 
of modified Arg-CDs upon light-activation in 
their antibacterial properties.29

A complete characterization of Arg-CDs 
was also reported in earlier research.29,30 
Arg-CDs have an isoelectronic point of pH 
4.1 with a zeta potential value of +2.8±0.5 
mV.29,30 An acid treatment was commonly 
used to protonate the amine groups on 
the Arg-CD particle. In comparison to neat 
Arg-CD (untreated with HCl), which had a 
zeta potential value of +2.8±0.5 mV, the pro-
tonation of Arg-CD generated a higher zeta 
potential value, +21±1.2 mV.

The structural, thermal, and optical prop-
erties of prepared Arg-CD and Arg-CD+ were 
analyzed via FT-IR, TGA, and fluorescence 
spectra, spectroscopy and given  Figure 
2. In Figure 2 (a), the FT-IR spectra of Arg, 
Arg-CD, and Arg-CD+ were compared. The 
characteristic peaks for Arg amino acid such 
as aliphatic CH2 at 2932 and 2848 cm–1, 
C=O stretching at 1678 cm–1, NH2 asymmet-
ric bending at 1620 cm–1, COO– symmetric 
stretching at 1425 cm–1, and NH2 asymmetric 
rocking at 1192 and 1136 cm–1, respectively 
are clearly seen.32,33 From the FT-IR spectra 
of Arg-CD and Arg-CD+, the peaks for C=O 

methanolysis of NaBH4. The effect of pro-
tonation, the amount of catalyst (10-50 mg), 
the concentration of NaBH4 (62.5-250 mM), 
the reaction temperature (-10 - +40 oC) on 
catalytic activity of catalysts in reaction were 
also tested. The important activation param-
eters, Ea, ΔH, and ΔS were also calculated 
from the well-known Arrhenius and Eyring 
equations (Eq. (1), and Eq (2)), respectively.

ln k = -(Ea/RT) x (1/T) ln A        (1)

ln (k/T) = -(ΔH/R)(1/T) + ln (kB/h) + ΔS/R      (2)

where k is the reaction’s rate constant, 
Ea is its activation energy, T is its absolute 
temperature, kB is its Boltzmann constant at 
1.381x10-23 JK-1, and h is its Planck constant 
at 6.626 10-34 Js; additionally, ΔH is its acti-
vation enthalpy, ΔS is its activation entropy, 
and R is its gas constant at 8.314 JK-1mol-1.

Moreover, the reusability, and regeneration 
ability of Arg-CD based catalyst were also 
tested via following literature31.

3. Results and Discussion

3.1 Preparation and optical properties 
of Arg-CD and Arg-CD+ catalysts

The Arg-CDs were synthesized by our 
group via microwave methods in earlier 
studies,29,30 and the corresponding sche-
matic presentation of CD formation is given 
in Figure 1. The prepared Arg-CD pos-
sesses amine groups in the structure due to 

produce H2.20 The cost-effectiveness, envi-
ronmentally benign nature, higher surface 
areas and so on render carbon based mate-
rial unique advantages for the researchers to 
focused on catalytic applications of carbon 
based materials.21,22 There are also report 
for the new type carbon based materials 
called ‘carbon dots’ with nano sizes, e.g., in 
0.5-50 nm range with some extra additional 
assets such as conductivity, and fluorescent 
properties.23,24 The optic properties of CDs 
make them light-sensitive structures with 
the possibility of photocatalyst materials in 
various application including energy, sensor, 
biomedical, and environmental uses.23,25–28

In this study, the synthesis of argi-
nine-based N-doped carbon dots (Arg-CDs) 
via microwave technique were reported and 
their use for H2 production from NaBH4 were 
examined. The Arg-CDs were protonated 
due to the presence of amine groups on 
the structure upon HCl treatment and the 
catalytic performance on H2 production was 
compared with untreated Arg-CD as cata-
lysts. The effect of protonation, temperature, 
NaBH4 concentration, and catalyst amount 
on catalytic activity of Arg-CDs based cata-
lyst were investigated. The H2 generation rate 
(HGR), and important activation parameters 
(Ea, ΔH, and ΔS) for Arg-CD based catalysts 
catalyzed NaBH4 methanolysis reactions 
were determined. Moreover, the repetitive 
use and regeneration ability of Arg-CD+ cat-
alyst were tested.

2. Experimental

2.1 Materials
Citric acid monohydrate (CA, >99%, 

Carlo Erba, France) and L-Arginine (>98%, 
Sigma Aldrich, USA) were used for syn-
thesis of Arg-CDs. Hydrochloric acid (HCl, 
37.5%, Sigma Aldrich, USA) was used to 
protonate Arg-CDs.  Acetone (96%, Birkim, 
Türkiye) were used for the precipitation of 
the prepared Arg-CDs. Sodium borohydride 
(NaBH4, ≥98%, Merck, Germany) was used 
as hydrogen (H2) carrier, and methanol (99%, 
Carlo Erba, France) was used as a solvent for 
H2 production reactions.

2.2 Synthesis, characterization and 
catalytic use of Arg-CDs

The synthesis of Arg-CD was done in 
accordance with the research that was 
already been published 29,30. The Fourier 
Transform Infrared Radiation (FT-IR, Thermo 
Nicolet iS10), Thermal gravimetric analy-
sis (SII TG/DTA 6300, EXSTAR), and flu-
orescence spectrophotometer (Thermo 
Scientific, Lumina, USA) were used to char-
acterize prepared Arg-CDs. 

Catalytic performances of Arg-CDs 
were tested in H2 generation studies from 

+ Microwave

3 min

HCl
2 h, RT

Figure 1. The schematic presentation of synthesis and protonation of Arg-CDs.Figure 1. The schematic presentation of synthesis and protonation of Arg-CDs.
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stretching at 1780 and 1701 cm–1, NH2 bend-
ing at 1660 cm–1, C-N stretching vibration at 
1397 cm–1, and NH2 rocking at 1189 cm–1 
were observed also exist.29 The NH2 bending 
peak intensity at 1660 cm–1 increased after 
protonation of Arg-CDs.

In Figure 2 (b), the TGA thermogram 
compared the thermal stabilities of prepared 
Arg-CD and Arg-CD+ particles. It was clearly 
seen that the Arg-CD was thermally stable 
up to 200 oC and degraded in one step 
between 200-630 oC with >95% weight 
loss. On the other hand, Arg-CD+ started to 
degrade between 140-160 oC with almost 
10% weight loss, then the second degrada-
tion step was observed between 180-270 
oC with 28% cumulative weight loss, and 
the last degradation step between 280-560 
oC with more than 99% cumulative weight 
loss was seen. The fluorescence spectrum 
of Arg-CD and Arg-CD+ was also given in 
Figure 2 (c). The excitation wavelength of 
Arg-CD at 340 nm, shifted to 350 nm after 
preparation Arg-CD+. Moreover, the emis-
sion wavelength for Arg-CD and Arg-CD+ at 
related emission wavelengths were deter-
mined as 425, and 440 nm, respectively. The 
fluorescence intensity, and calculated QY% 
values for Arg-CD and Arg-CD+ were also 
compared in Table 1.Figure 2. The comparison of (a) FT-IR spectra, (b) TGA thermograms, and (c) Fluorescence 

spectrums of Arg-CD and Arg-CD+.
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Figure 3. The methanolysis of NaBH4 to produce H2 using (a) self-methanolysis 
and Arg-CDs, and (b) a comparison of the HGR values for Arg-CD and Arg-CD+ 
catalyzed processes [Reaction condition: 20 mL methanol, 0.0965 g NaBH4, 50 mg 
catalyst, 1000 rpm, 25 oC].
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Figure 2. The comparison of (a) FT-IR spectra, (b) TGA thermograms, and (c) 
Fluorescence spectrums of Arg-CD and Arg-CD+.

Figure 3. The methanolysis of NaBH4 to produce H2 using (a) 
self-methanolysis and Arg-CDs, and (b) a comparison of the 
HGR values for Arg-CD and Arg-CD+ catalyzed processes 
[Reaction condition: 20 mL methanol, 0.0965 g NaBH4, 50 mg 
catalyst, 1000 rpm, 25oC].

The fluorescence intensity of Arg-CD is 39620 reduced upon pro-
tonation and measured as 29300 at 500 V PMT voltage for Arg-CD+. 
Similarly, the calculated QY% values, based on 0.5 M quinine sulfate 
as standard, for Arg-CD is 32±3 is reduced to 21±1% for Arg-CD+. 
This is plausible as the present of hydronium ions in the structure 
increase the non-irradiative loss of energy for excited atoms. 

3.2 H2 production in the presence of Arg-CD and Arg-CD+ 
as catalysts

The suggested mechanism for metal-free amine based catalysis 
of reaction is Michaelis-Menten type mechanism and was reported 
in the literature with details.34,35 Arg-CDs with amine groups in their 
structure were utilized as catalysts to generate H2 from the reaction 
because these materials having amine groups have strong catalytic 
activity in the process. In addition, the benign nature (e.g., biocom-
patibility) of Arg-CDs render added motivation to use CDs particles 
as catalyst for clean energy generation tools. In Figure 3 (a), the 
self-methanolysis of NaBH4 (without catalysts) is given and as seen 
this reaction was completed in 45 min with 250±2 mL H2 produc-
tion. On the other hand, the self-methanolysis of NaBH4 3-times 
accelerated in the presence of Arg-CD as catalyst, and the reaction 
completed in 15 min. In addition, 250±2 mL H2 production was 

Materials Fluorescence intensity 
(a.u) Quantum Yield (%)

Arg-CD 39620 2±33

Arg-CD+ 29300 21±1

Table 1. The comparison of fluorescence intensity and QY% 
values for Arg-CD, and Arg-CD+.
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in methanol were completed in 6, 7, and 
8 min with 123±2, 250±2, and 490±5 mL 
H2 productions, respectively. Their HGR 
values are presented in Figure 4 (d). It is 
clear that the HGR values were increased 
with the increase in the concentration of 
NaBH4. The HGR values were calculated 
as 1512±101, 2534±128, and 5066±187 
mL H2 x (gcat x min)-1 for 62.5, 125, and 500 
mM NaBH4, respectively. This is reasonable 
as the increasing in collision probability of 
catalyst and NaBH4 is increased with the 
increase in the concentration of NaBH4. 

3.3 Activation parameters of Arg-CD 
and Arg-CD+ catalyzed reaction

The activation energy (Ea), enthalpy (ΔH), 
and entropy (ΔS) as important activation 
parameters were calculated for the reaction 
catalyzed by Arg-CD based materials by car-
rying the reactions at different temperatures. 
For this purpose, the reaction catalyzed by 
Arg-CD and Arg-CD+ were done at different 
temperatures ranging-10 - +40 oC, and the 
related graphs are given in Figure 5 (a), and 
(b) respectively. In Figure 5 (a), the reaction 
catalyzed by Arg-CD produced 250±2 mL 
H2 in 40, 30, 21, 15, and 7 min at -10, 0, 10, 
25, and 40 oC, respectively. The calculated 
HGR values for Arg-CD catalyzed reaction 
decreased from 1806±106 mL H2 x (gcat x 
min)-1 to 364±29 mL H2 x (gcat x min)-1 with the 
decrease of reaction temperature from 40 to 
-10 oC. Similarly, the reaction completion time 
for Arg-CD+ catalyzed reaction decreased 
with the decrease in temperature from 40 to 
-10 oC, and the related graph is illustrated in 
Figure 5 (b). The Arg-CD+ catalyzed reac-
tion conducted at -10, 0, 10, 25, and 40 oC 
completed with 250±2 mL H2 production in 
21, 18, 14, 7 and 5 min, respectively. Their 
HGR values at -10, 0, 10, 25, and 40 oC 
were also calculated and determined as 
1245±53, 1632±33, 1798±87, 2534±128, 
and 3233±151 mL H2 x (gcat x min)-1, respec-
tively. As can be seen from Figure 5 (a), and 
(b) the reaction rates and HGR values were 
found to increase with increase in reaction 
temperature as expected.

Moreover, the Arrhenius and Eyring graphs 
for Arg-CD and Arg-CD+ as catalyzed reac-
tions to calculate activation parameters are 
plotted and presented in Figure 5 (c), and 
(d), respectively. The calculated Ea, ΔH, and 
ΔS values for Arg-CD catalyzed reaction 
are 20.6 kJ/mol, 17.8 kJ/mol, and -175 J/
(K x mol), respectively whereas the same 
parameters were calculated as 10.9 kJ/mol, 
8.4 kJ/mol, and -148 J/(K x mol) for Arg-CD+ 
as catalyst. The calculated Ea values for 
Arg-CD and Arg-CD+ as catalyzed reaction 
as 20.6 and 10.9 kJ/mol were compared 
with some of the similar studies in literature 
and compared in Table 2.

completed in 21, 11, and 7 min, respectively 
each producing 250±2 mL of H2. On the 
other hand, the HGR values were com-
pared in Figure 4 (b). As it can be seen the 
decrease in the amount of catalyst increased 
the HGR values. The HGR values were 
calculated as about 12700, 3500, and 1200 
mL H2 x (gcat x min)-1 for 10, 25, and 50 mg 
Arg-CD+ catalyzed reactions, respectively. 
There was no direct proportion between 
the decrease in the amount of catalyst and 
the increase in the reaction completion time. 
However, the HGR values  , and the reaction 
starts rapidly as the reaction proceeds the 
probability of collision of NaBH4 with the 
catalyst decreases as the amount of NaBH4 
decreases in the medium.

Moreover, the concentration effect of 
NaBH4 was also studied for H2 produc-
tion reaction in the presence of 50 mg of 
Arg-CD+ catalyst at 25 oC, and correspond-
ing graph is given in Figure 4 (c). It is obvious 
that NaBH4 concentration did not affect the 
completion of reaction as each resulted 
in 100% conversions (stoichiometrically). 
The H2 production from Arg-CD+ catalyzed 
62.5, 125, and 500 mM NaBH4 solution 

observed in 7 min for the Arg-CD+ used as 
catalyst. So, the Arg-CD+ catalyzed reaction 
is almost 2-times faster than the Arg-CD 
catalyzed reaction.

Moreover, the HGR values for Arg-CD and 
Arg-CD+ catalyzed reaction is presented in 
Figure 3 (b). It was observed that the cal-
culated HGR value for Arg-CD+ catalyzed 
reaction as 2534±128 min-1 is higher than 
Arg-CD catalyzed reaction, 1429±82 min-1. 
The increase on catalytic activity of Arg-CD+ 
catalyzed reaction can be explained by easy 
release of H2 from the BH4

- anion after inter-
action with the protonated amine groups on 
Arg-CD+.34,35

Moreover, Arg-CD+ catalyzed reaction in 
the presence of different catalyst amounts, 
NaBH4 concentrations were also investi-
gated, and the resulting graphs are pro-
vided in Figure 4. In Figure 4 (a), the effect 
of amount of Arg-CD+ catalyst in reaction 
showed that the decrease in the amount 
of Arg-CD+ catalyst resulted in an increase 
in time to complete the reaction. For the 
reactions catalyzed by 10, 25, and 50 mg of 
Arg-CD+, the corresponding reactions were 

Figure 4. The effect of amount of catalyst on (a) hydrogen production with time, (b) the change 
in HGR values with different amounts of catalyst, (c) the effect of concentration of NaBH4 on 
hydrogen production, and (d) the change in HGR values with amounts of NaBH4 [Reaction 
condition, Arg-CD+ as catalyst, 20 mL methanol, NaBH4, 25 oC, 1000 rpm].
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Figure 4. The effect of amount of catalyst on (a) hydrogen production with time, 
(b) the change in HGR values with different amounts of catalyst, (c) the effect of 
concentration of NaBH4 on hydrogen production, and (d) the change in HGR values 
with amounts of NaBH4 [Reaction condition, Arg-CD+ as catalyst, 20 mL methanol, 
NaBH4, 25 oC, 1000 rpm].
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reaction by-product, NaBO2 on the active 
sides of the catalyst reducing the cata-
lytic performance,34,35 the methoxy borate 
([B(OCH3)4]–) anions which is by-product of 
reaction can poison or deactivate the cata-
lyst. Even with the decrease on the activity% 
of catalyst, Arg-CD+ catalysts exhibited more 
than 50% activity after 5 successive uses.

The regeneration ability of Arg-CD+ cat-
alyst was achieved with a simple HCl acid 
treatment that is protonation of the amine 
groups on catalyst again. The regeneration 
studies of the Arg-CD+ catalyst after 5 suc-
cessive uses in reaction up to 4 regeneration 
is given in Figure 6 (b). In the first 5 repeated 
use of Arg-CD+ catalyst in reaction, the 
activity% of catalyst decreased to 55±4% 
from the 100%, and after 1st regeneration 
of Arg-CD+ catalyst the activity% of cata-
lyst increased to 99±0.9% and decreased 
to 69±2% after 5th use. The activity% of 
Arg-CD+ catalyst increased from 69±2% 
to 91±1% after 2nd regeneration, and the 
after 5 consecutive usages activity% of 
catalyst decreased to 56±3%. The activity% 
of catalyst increased to 89±3% after 3rd 
regeneration, and its 5 consecutive usages 
caused decrease on activity to 56±3%. The 
4th regeneration after 4th reuse of Arg-CD+ 
catalyst increased activity to 65±4%, and 

In literature, the reported Ea values for 
reaction catalyzed by various catalysts are 
10.6 kJ/mol for S and N-doped metal-free 
carbon materials,36 11.8 kJ/mol for saw-
dust-based biomass-derived activated car-
bon catalyst,37 30.3 kJ/mol for P-doped 
g-C3N4 catalyst,38 31.0 kJ/mol for P-doped 
carbon nanodots catalyst,39 47.3 kJ/mol for 
dandelion-like CNTs-Ni foam composite 
carrier supported Co-Mo-P ternary alloy 
catalyst,40 49.9 kJ/mol for dandelion-like 
CNTs-Ni foam composite carrier supported 
Co-P as catalyst,41 and 55.1 kJ/mol for 
mesoporous graphitic carbon nitride/black 
phosphorus-Ag/Pd as catalyst.42 It is appar-
ent that the reaction catalyzed by Arg-CD+ 
catalyst with 10.9 kJ/mol of activation energy 
is amongst the lowest ones reported in the 
literature. Therefore, the catalysts based on 
Arg-CDs have the potential to compete with 
the other carbon-based materials reported 
in the literature and possesses promising 
potential as catalyst not only because of cat-
alytic performance but also its green nature. 

3.4 Reusability and regeneration ability 
of Arg-CD+ catalyst in reaction

Among the various parameters for the 
determination of cost-effectiveness of cata-
lyst that determines their industrial application 
potential is their reusability and regeneration 
capability. Therefore, the repetitive usage 
and regeneration ability of Arg-CD+ catalyst 
in reaction were tested and corresponding 
graphs are illustrated in Figure 6 (a) and 
(b), respectively. It was observed that the 
reaction catalyzed by Arg-CD+ can complete 
100% conversion for each use up to consec-
utive uses. On the other hand, the activity% 
of Arg-CD+ catalyst decreased after each 
use as shown in Figure 6 (a). The activity in 

Figure 5. The effect of temperature on (a) Arg-CD, (b) Arg-CD+ catalyzed methanolysis of 
NaBH4, (c) Arrhenius, and (d) Eyring plots for Arg-CD based catalysts catalyzed reactions. 
[Reaction condition: 20 mL methanol, 0.0965 g NaBH4,  50 mg catalyst, 1000 rpm].
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Figure 5. The effect of temperature on (a) Arg-CD, (b) Arg-CD+ catalyzed methanolysis 
of NaBH4, (c) Arrhenius, and (d) Eyring plots for Arg-CD based catalysts catalyzed 
reactions. [Reaction condition: 20 mL methanol, 0.0965 g NaBH4,  50 mg catalyst, 
1000 rpm].

Table 2. The comparison of Ea values of Arg-CD and Arg-CD+ catalyzed the 
reaction with the literature.

Catalysts Ea (kJ/mol) Ref

Arg-CD 20.6
This study

Arg-CD+ 10.9

S-AC-S-N 10.59 [36]

AC 11.76 [37]

P doped g-C3N4 30.29 [38]

P doped PPCD 30.96 [39]

Co-Mo-P / CNTs-Ni 47.27 [40]

Co-P/CNTs-Ni 49.94 [41]

mpg-CN/
BP-AgPd-aat

55.1 [42]

first usage of catalyst is accepted as 100% 
and decreased from 81±4 to 55±4% after 
2nd, and 5th use, respectively. The explana-
tion of decrease in the activity% of Arg-CD+ 
catalyst is deprotonation of amine groups 
on Arg-CD+ catalyst, or the accumulation, 
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for the catalytic activity after acid treat-
ment. FT-IR spectrum of five repeated used 
Arg-CD+ has the characteristic beaks for 
methoxy borate around 1330 cm–1 assigned 
to B-O, and the peaks between 1100-800 
cm–1 assigned to C-O and C-H peaks. On 
the other hand, after the regeneration of 
Arg-CD+ catalyst the peaks belonging to 
methoxy borate disappeared confirming the 
removal of reaction byproducts. Therefore, 
this regeneration ability of Arg-CD+ catalyst 
makes them superior in comparison to the 
other catalysts used for the same purpose.

4. Conclusions
The Arg-CD prepared by microwave tech-

nique was used as catalyst in methanol to 
produce H2 from NaBH4. It was shown that 
the protonation of Arg-CDs via simple HCl 
treatment (Arg-CD+) increases the catalytic 
performance two-fold. Also, the calculated 
activation energy for Arg-CD+ catalyzed 
reaction is 10. kJ/mol is lower than most 
of the reported values of the different cata-
lysts including metal and non-metal-based 
catalyst used for the same purpose. It was 
also found that the Arg-CD+ catalyst can 
be readily used in 5 consecutive runs in 
the reaction with more than 50% activity. 
The decrease in activity of Arg-CD+ catalyst 
after 5 consecutive usages is explained by 
the deprotonation of amine groups or the 
accumulation of the by-product of hydrolysis 
reaction, sodium metaborate (NaBO2) on 
active sides of catalyst. On the other hand, 
the regeneration of the catalyst by simple 
acid treatment (protonation) of the used 
Arg-CD+ catalyst revealed a recovery of the 
catalytic activity of catalyst by reactivation of 
the amine groups and removing of by-prod-
uct from catalyst. This simple regeneration 
ability of catalyst grants almost 25 repetitive 
usages with more than 50% activity for the 
reaction to produce H2. In addition to the 
non-toxic nature of Arg-CD+ catalysts, the 
lower activation energy, higher reuse ability 
enables these Arg-CD+ catalysts to be a 
promising catalytic material for industrial 
applications for H2 production from NaBH4.
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to produce H2 via enhanced regeneration 
ability of catalysts.

The FT-IR spectra of Arg-CD+ before and 
after five consecutive use and after regener-
ation are compared presented in Figure 6 
(c) to explain possible reasons of decreasing 
catalytic activity after reuse and increase 

after 5 consecutive usages activity% of cat-
alyst decreased to 40±2%. As can be seen 
from Figure 6 (b), a simple one step acid 
treatment provides easily increasing on the 
decreased activity% of Arg-CD+ after 5 con-
secutive uses. More than 20 usages were 
provided by Arg-CD+ catalysts in reaction 

Figure 6. (a) Reuse, (b) regeneration ability of Arg-CD+ catalyst in methanolysis of NaBH4, and (c) the FT-
IR spectrum of Arg-CD+, 5 times used Arg-CD+, and regenerated Arg-CD+ catalyst. [Reaction condition, 20 
ml methanol, 0.0965 g of NaBH4, 50 mg catalyst, 1000 rpm, 25 oC].
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Figure 6. (a) Reuse, (b) regeneration ability of Arg-CD+ catalyst in methanolysis of 
NaBH4, and (c) the FT-IR spectrum of Arg-CD+, 5 times used Arg-CD+, and regenerated 
Arg-CD+ catalyst. [Reaction condition, 20 ml methanol, 0.0965 g of NaBH4, 50 mg 
catalyst, 1000 rpm, 25 oC].
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