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energy minima. A harmonic potential well in NMA 
has the following form,6

      (1)

RR is a 3N-dimensional vector describing the 
stable conformation at the center of the well, 
where N is the number of atoms. Similarly, rr is 
a 3N-dimensional vector that represents the 
current/instantaneous protein conformation. The 
superscript T denotes the transpose, i.e. the row 
vector (r-Rr-R) in this case. The matrix HH, known as 
the Hessian, is symmetric and positive semidef-
inite matrix, and characterizes the shape of the 
potential well. Given a potential energy function 
U, each element of HH is calculated as the second 
derivative of U with respect to pairs of, coordi-
nates qi,             qj (1 ≤ i,j ≤ 3N; e.g. the x-, y-, 
and z-components of the atomic position vectors), 
evaluated at the local minimum RRmin.

(2)

History of Elastic Network Models: 
From Complex Energy Surfaces to 
Elegant Simplicity

Proteins possess a complex energy landscape 
characterized by a rugged, funnel-like shape with 
multiple minima.1,2 Motions within a minimum are 
mainly harmonic,3-5 while the anharmonic com-
ponents arise from transitions between minima.3 

Thus, the energy landscape can be approximated 
by a harmonic shape near their global energy min-
ima (Figure 1). This foundational observation has 
facilitated the application of normal mode anal-
ysis (NMA),6 which simplifies the computational 
modeling of protein dynamics by concentrating 
on the harmonic portion of the energy surface 
during equilibrium motions. Introduced at the 
atomic level in the 1980s through the pioneering 
work of Go et al.7, Brooks and Karplus8, and Levitt 
et al.9, NMA offers a computationally efficient 
approach to exploring the space of accessible 
motions near equilibrium conditions; whereas 
all-atom molecular dynamics (MD) simulations 
may provide additional insights by accounting for 
anharmonic contributions and exploring multiple 

Elastic Network Models (ENMs) 
have improved our understanding 

of protein dynamics by providing a 
simplified yet accurate representation 
of complex molecular motions. 
Originating from the fundamental 
theory and methods of solid-state 
physics and polymer science, 
ENMs approximate biomolecular 
structures, both proteins and DNA/
RNA molecules and their complexes, 
as networks of nodes (residues) 
connected by elastic springs. This 
simple representation allows for 
obtaining an analytical solution for 
the spectrum of motions uniquely 
accessible to the structure, similar 
to that obtained by normal mode 
analysis (NMA) of molecular systems. 
This review traces the evolution of 
ENMs from their origin, highlighting 
key developments such as the 
Gaussian Network Model (GNM) and 
the Anisotropic Network Model (ANM) 
originally introduced in the late 1990s 
and early 2000s by Turkish scientists 
at Bogazici University Polymer 
Research Center (PRC). These 
models have substantially impacted 

Mert Gur
Assoc. Prof. Mert Gur is the Executive 
Director of the Computational 
Biomedicine & Biotechnology M.S. 
Program at the University of Pittsburgh 
(Pitt) School of Medicine (SOM) 
Department of Computational and 
Systems Biology (CSB) and a faculty 
at Istanbul Technical University 
(ITU) Mechanical Engineering (ME) 
Department. He earned his B.S. 
in ME (2006) at the Middle East 
Technical University and his Ph.D. 
in Computational Science and 
Engineering (2010) at Koc University in 
Türkiye.  He worked as a postdoctoral 
associate at the Pitt SOM CSB and 
then at Lawrence Berkeley National 
Laboratory, until joining ITU ME as a 
faculty member in 2015. He served 
as Vice Dean of the School of ME at 
ITU (2018-2020) and as Vice Dean 
of the Graduate School of Science, 
Engineering, and Technology (2020-
2022) at ITU. His research focuses 
on Computational Structural Biology, 
Computational Biomedicine, and 
Mechanical Engineering. He received 
several prestigious awards in Türkiye.

Mert Golcuk
Mert Golcuk holds a B.Sc. and M.Sc. 
from Istanbul Technical University, 
where he is currently pursuing his 
Ph.D. under the supervision of Assoc. 
Prof. Mert Gur. His research leverages 
molecular dynamics simulations to 
explore the mechanisms of molecular 
motors, membrane-associated 
proteins, the SARS-CoV-2 spike 
protein, and nanobody inhibition. His 
work also delves into drug targeting 
and peptide design.

Ivet Bahar
is currently Louis & Beatrice Laufer 
Endowed Professor and Director at 
the Laufer Center for Physical and 
Quantitative Biology of Stony Brook 
University. She was a professor 
at Bogazici University Chemical 
Engineering Department (1986-2001) 
and the University of Pittsburgh (2001-
2022) before that. Her major area of 
research is theory and computations of 
biochemical and biophysical systems, 
with applications to protein dynamics 
and drug discovery. She is an elected 
member of European Molecular 
Biology Organization (EMBO) and the 
US National Academy of Sciences 
(NAS).By: Mert Gur, Mert Golcuk, Ivet Bahar

https://doi.org/10.51167/acm00072

ELASTIC NETWORK 
MODELS IN PROTEIN 
DYNAMICS:
Bridging Simplicity and Complexity

the field by offering insights into how 
protein flexibility, collective changes in 
conformation, and coupling within and 
across monomers/subunits in large 
assemblies define the mechanisms of 
motions that often enable the biological 
actions. We provide a brief overview of 
the theoretical foundations of ENMs, 
and the simplicity and computational 
efficiency of the underlying methods, 
along with illustrations of its use in 
predicting residue fluctuation profiles 
or global changes in structures. 
Additionally, we emphasize the 
integration of ENMs with all-atom 
molecular dynamics (MD) simulations 
and cryo-electron microscopy (cryo-
EM) data, showcasing their utility of 
these hybrid modeling approaches. 
The review also discusses the utility 
of ENMs in elucidating the effects 
of oligomerization and membrane 
interactions on the functional 
dynamics of proteins. Through these 
discussions, we underscore the critical 
role and expanding potential of ENMs 
in computational biophysics and 
structural biology.
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for chain connectivity but also tertiary con-
tacts. Tertiary contacts indeed are the major 
features that distinguish biological polymers 
(proteins and DNA) from synthetic polymers. 
The Γ matrix then becomes

 
(4)

where zi is the coordination number of node 
i, given by the negative sum of all non-diag-
onal elements in the same row (or column, 
since Γ is symmetric), rij is the distance 
between nodes i and j, and rcut is a cutoff 
distance for defining node pairs that are 
connected by a spring. In this new model, 
called the Gaussian Network Model (GNM) 
introduced by Bahar, Atilgan, and Erman in 
1997,12 the nodes represent the individual 
amino acids, their locations being identified 
by that resolved by X-ray crystallography (or 
NMR or cryo-EM) and the springs account 
for those connected or making secondary 
and tertiary contacts, by adopting a cutoff 
distance of rcut=7.0 Å. This distance is rep-
resentative of a first shell of inter-residue 
coordination based on the extensive evalu-
ation of the contact probabilities of residue 

Yet, the requirement for a detailed all-atom 
force field, combined with the complexity 
and mathematical challenges associated 
with energy minimization to locate Rmin, 
has limited the broader adoption of NMA. 
Furthermore, while the harmonic approxi-
mation may provide a good description of 
the energy landscape near an energy min-
imum, the complete landscape may have 
multiple minima, especially when modeled 
at full atomic scale (as illustrated in Figure 
1 for dynein, a motor protein10), which limits 
the applicability of NMA at full atomic scale. 

 Starting from 1996, a classical paper 
published by Monique Tirion in Physical 
Review Letters led to a new era: Tirion11 
demonstrated that a full atomic NMA using 
harmonic potentials with uniform spring 
constants for all atom pairs within an inter-
action range could yield low frequency mode 
shapes nearly identical to those deduced 
from NMA carried out with full-fledge force 
fields typically used in MD simulations. The 
insensitivity of the low frequency modes to 
the force field, and the possibility of adopt-
ing uniform harmonic potentials (or elastic 
springs) between all atom pairs to end up 
with mode shapes almost indistinguishable 
from those otherwise obtained with sophis-
ticated potentials and tedious energy mini-
mization algorithms, caught the attention of 
the Turkish scientists at the PRC (Bogazici 
University, Istanbul). Rather than carrying 
an NMA, the scientists Bahar, Erman, and 
Atilgan came up with an analytical model12 
inspired by the classical Rouse model of 
polymer physics. According to the Rouse 
model, the macromolecule is represented 
by a string of beads connected by springs of 
uniform force constant. The beads represent 
sequential structural units (monomers or 
segments of polymeric chain), such that the 
springs connect sequential neighbors (only) 
along the chain. The overall connectivity of 
the macromolecule is then represented by 
the so-called Rouse matrix of the form

 

(3)

The PRC team, inspired by Tirion’s paper 
and fundamental concepts of solid-state 
physics, as well as the theory of elasticity of 
polymer networks13,14, came up with the idea 
of replacing the Rouse matrix (of polymers) 
by a new form, the Kirchhoff matrix Γ, with 
the major difference of connecting not only 
the sequential neighbors along the chain, 
but also those making spatial contacts. The 
structure would thus be represented by a 
‘network’, rather than a spring-and-beads 
model. This way Γ would account not only 

Figure 1: Anharmonic potential energy surface associated with the priming stroke 
of dynein and approximately harmonic potentials near the end points. Middle panel: 
The potential energy landscape of dynein motor protein priming stroke obtained from 
11,250 ns of all-atom MD simulations10. Two minima are sampled corresponding to the 
dynein’s straight and semi-bent conformations. Left and right panel: Approximating 
the energy surface near the semi-bent and straight linker states by a harmonic energy 
surface. Dynein is responsible for intracellular transport, and its linker domain plays a 
crucial role in generating the "priming stroke" a conformational change that prepares 
the motor for its power stroke and provides forward swinging motion, facilitating 
movement along microtubules.
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adopting a cutoff distance of 𝑒𝑒*+, = 7.0	Å. This distance is representative of a first shell of inter-residue 
coordination based on the extensive evaluation of the contact probabilities of residue pairs15 in structures 
deposited in the Protein Data Bank (PDB). The overall potential of the protein represented by the GNM is 
given by 

𝑈𝑈(∆𝐑𝐑) =
𝛾𝛾
2
(∆𝐑𝐑)!𝚪𝚪(∆𝐑𝐑) (5) 

 

where 𝛾𝛾 is a uniform force constant for all springs of the model. Equation (5) has same form as Equation 
(1); ∆𝐑𝐑 represents in this case the change in the position of the N residues, (∆𝐑𝐑)! =
	(∆R-		∆R&		∆R. 		…		∆R/) away from their equilibrium positions12,16. GNM allows for a simple evaluation 
of normal modes in the N-dimensional space of residues16. Elastic springs are defined only between Cα 
atoms that are within a cutoff distance of 𝑒𝑒*+,. This connectivity information is stored in the Kirchhoff 
matrix 𝚪𝚪 by setting diagonal elements to the degree of each node and off-diagonal elements to -1 if 
connected, as described by Equation (4). The fluctuations are assumed to be isotropic and Gaussian, such 
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pairs15 in structures deposited in the Protein 
Data Bank (PDB). The overall potential of the 
protein represented by the GNM is given by

(5)

where γ is a uniform force constant for all 
springs of the model. Equation (5) has same 
form as Equation (1); ∆RR represents in this 
case the change in the position of the N 
residues, (∆RR)T= (∆R1   ∆R2   ∆R3   …  ∆RN) 
away from their equilibrium positions12,16. 
GNM allows for a simple evaluation of nor-
mal modes in the N-dimensional space of 
residues16. Elastic springs are defined only 
between Cα atoms that are within a cutoff 
distance of rcut. This connectivity informa-
tion is stored in the Kirchhoff matrix ΓΓ by 
setting diagonal elements to the degree of 
each node and off-diagonal elements to 
-1 if connected, as described by Equation 
(4). The fluctuations are assumed to be iso-
tropic and Gaussian, such that the model 
provides a description of the size of motions 
(e.g. the mean-square fluctuations <(ΔRR)  > 
of amino acids, or their cross-correlations 
<ΔRRi ∙ ΔRRj>), not their directionality. The 
mean-square (ms) fluctuations of the indi-
vidual residues and their cross-correlations 

that the model provides a description of the size of motions (e.g. the mean-square fluctuations < (Δ𝐑𝐑)"& > 
of amino acids, or their cross-correlations < Δ𝐑𝐑" 	 ∙ 	Δ𝐑𝐑# >), not their directionality. The mean-square (ms) 
fluctuations of the individual residues and their cross-correlations are obtained by generalized Gaussian 
integrations over all fluctuations as  

< (Δ𝐑𝐑)"& >	= 	X(Δ𝐑𝐑)"& exp{−𝑈𝑈(𝛥𝛥𝑹𝑹)/𝑘𝑘𝑘𝑘} 𝑑𝑑Δ𝐑𝐑/Xexp{−(𝛥𝛥𝑹𝑹)/𝑘𝑘𝑘𝑘} 𝑑𝑑Δ𝐑𝐑 =
3𝑘𝑘𝑘𝑘
𝛾𝛾

[Γ0-]""  (6) 

 

and  

< Δ𝐑𝐑" 	 ∙ Δ𝐑𝐑# >	=
3𝑘𝑘𝑘𝑘
𝛾𝛾

[Γ0-]"#  (7) 

 

Here 𝑘𝑘 is the Boltzmann constant, 𝑘𝑘 is the absolute temperature, and b𝚪𝚪0𝟏𝟏c"# denotes the ijth element of the 
pseudoinverse of 𝚪𝚪. The GNM lends itself to a unique evaluation of normal modes for each structure, upon 
eigenvalue decomposition of 𝚪𝚪, as		 𝚪𝚪 = 𝐔𝐔𝐔𝐔𝐔𝐔2, where 𝐔𝐔 is the N x N matrix of eigenvectors 
[𝒖𝒖𝟎𝟎		𝒖𝒖𝟏𝟏		𝒖𝒖𝟐𝟐 	… 	𝒖𝒖𝑵𝑵0𝟏𝟏], and 𝐔𝐔 is the diagonal matrix of eigenvalues comprised of the zero eigenvalue (𝜆𝜆6 =
0), and non-zero eigenvalues organized in ascending order 𝜆𝜆- ≤ 𝜆𝜆& ≤ 𝜆𝜆. ≤ ⋯ ≤ 𝜆𝜆70-, scaling with the 
frequency of individual modes. The N elements of the eigenvector uk describe the normalized displacements 
of the N residues along the kth mode. Often times, a few modes at the low frequency end of the spectrum 
(e.g., k=1-3), also called global modes, make a dominant contribution to the overall dynamics. The 
fluctuations profile of residues in these modes reflect the residue displacements in the most cooperative 
motions that embody the entire structure. The contribution of three slowest modes to < (Δ𝐑𝐑)"& >, for 
example, is given by 

< (Δ𝐑𝐑)"& >	i8(-0. =
3𝑘𝑘𝑘𝑘
𝛾𝛾

j (
1
𝜆𝜆8
)[𝒖𝒖8𝒖𝒖8!]""

.

8(-
 (8) 

  

Previous applications have shown that such motions driven by the slowest mode often relate to cooperative 
displacements that are evolutionarily optimized/selected to achieve function; whereas those in the other end 
of the spectrum correspond to high frequency fluctuations undergone by the most severely confined (often 
high conserved, core) residues of the protein17-20. Therefore, to predict the modes of motion of a protein via 
GNM, only two simple steps are required: First, the connectivity information from the known structure in 
the PDB is transferred into matrix form, constructing the Kirchhoff matrix. Then, eigenvalue decomposition 
is performed directly on this matrix to separate the fluctuations into distinct modes of motion and evaluate 
the dynamic features driven by these modes, as in Equation (8).  

GNM has been the first of a series of elastic network models (ENMs) that have been proposed in the 
succeeding 4-5 years, and since then several variations have been proposed. Of particular interest is the 
broadly used Anisotropic Network Model (ANM) introduced by Bahar and her collaborators21. Unlike 
GNM, which assumes an isotropic motion, ANM accounts for anisotropic motions within a 3N-dimensional 
configurational space. The Kirchhoff matrix is replaced in this case by a Hessian that can be readily 
expressed by a simply analytical expression (without the need to carry out energy minimization) using PDB 
coordinates to define equilibrium conformation21. Note that the original derivation of the ANM, based on a 
force balance at each node, differs from that of classical NMA, but the resulting expressions for the 
spectrum of normal modes are the same. The major difference is the use of uniform harmonic potentials for 
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those observed by NMR in solution), the 
B-factors provides a first estimate of the 
relative flexibilities of individual residues. 
Likewise, the multiple models deposited 
for structures resolved by NMR spectros-
copy reflect the breadth of conformational 
space accessible to proteins. Cryo-electron 
microscopy (cryo-EM) further offers insights 
into protein dynamics by revealing various 
classes of conformations. Many studies12,21-25 

have confirmed the effectiveness of various 
ENMs in predicting residue ms fluctuations 
in reasonable agreement with the B-factors 
despite the approximations in both theory 
and experiments. 

Furthermore, while ENMs such as GNM 
and ANM, successfully predict exper-
imentally obtained native state residue 
fluctuations,12,21,24,25 they also satisfactorily 
reproduce residue fluctuations obtained 
with significantly more expensive all-atom 
MD simulations26,27 (Figure 2). In addition 
to predicting residue fluctuations, ENMs 
have also proven to predict structural tran-
sitions in accordance with those observed 
in experiments28,29 and sufficiently long MD 
simulations4. For example, the modes of 
motions predicted by the ANM were shown 
to agree with global motions exhibited by 
archaeal aspartate transporter, GltPh, in 
microseconds-long all-atom MD simula-
tions, which were crucial for understanding 
the mechanism of transport of the neuro-
transmitter glutamate in the human central 
nervous system. Likewise, milliseconds-long 
MD simulations for bovine pancreatic trypsin 
inhibitor (BPTI), a model protein important 
for studying protein folding and stability rel-
evant to various diseases, yielded fluctuation 
behavior nearly identical to that obtained by 
the ANM, while ANM results are obtained 
within several orders of magnitude shorter 
time. Furthermore, ANM-predicted collective 
motions along different modes were shown 
to agree with the conformational transitions 
undergone between the BPTI sub-states 
sampled in expensive MD simulations.4 

Revealing the Influence of 
Oligomerization and Membrane 
Coupling on Functional Dynamics

ANM was utilized to elucidate the impact 
and underlying physical mechanisms of pro-
tein oligomerization, specifically focusing on 
neurotransmitter symporters (NSS family). 
These studies demonstrated that dimeri-
zation significantly enhances the transitions 
between the outward-facing open (OFo) and 
inward-facing open (IFo) states of leucine 
transporter (LeuT) and dopamine trans-
porter (DAT), which are crucial for enabling 
substrate transport from the extracellular 
or synaptic region to the cytoplasm (Figure 
3).29 OFo and IFo refer to the conformational 
states that allow for alternating access to the 

Unlike GNM, which assumes an isotropic 
motion, ANM accounts for anisotropic 
motions within a 3N-dimensional configura-
tional space. The Kirchhoff matrix is replaced 
in this case by a Hessian that can be readily 
expressed by a simply analytical expression 
(without the need to carry out energy min-
imization) using PDB coordinates to define 
equilibrium conformation21. Note that the 
original derivation of the ANM, based on a 
force balance at each node, differs from that 
of classical NMA, but the resulting expres-
sions for the spectrum of normal modes 
are the same. The major difference is the 
use of uniform harmonic potentials for at the 
residue level in the ANM, as opposed to a 
full force field at atomic level in the classical 
NMA. The displacements of residues are 
therefore expressed in terms of their three 
components ΔRRi=[Δxi,Δy i,Δzi] leading to 
the 3N3N-dimensional eigenvectors and 3N-6 3N-6 
normal modes (excluding the rigid-body 
translation and rotations) described by the 
non-zero eigenmodes of the ANM Hessian. 
Therefore, the ANM provides information on 
the directions of motions or the so-called 
3N-dimensional deformation vectors ddk of 
the overall structure driven by the individual 
modes k.

In the next sections, we illustrate the utility 
of ENMs in predicting structural dynamics 
in accord with complex experiments and 
simulations, how ENMs help us understand 
the molecular basis of functional interac-
tions, such as the effects of oligomeriza-
tion and coupling to membrane dynamics. 
Additionally, recent years have seen an 
explosion in the number of hybrid meth-
odologies that combine ENMs and MD 
simulations, especially in the applications 
to modeling cryo-EM structures’ dynamics, 
which we briefly summarize below. 

Predicting Residue Fluctuations and 
Conformational Transitions with the 
ENMs

Temperature factors, also known as 
B-factors or Debye-Waller factors, describe 
the atomic displacement or thermal motion 
in a crystallographic structure, providing 
insights into the relative flexibility of protein 
residues. Even though the B-factors are 
biased by crystallographic contacts, and 
the observed motions are suppressed due 
to crystal environment (as compared to 
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Previous applications have shown that such motions driven by the slowest mode often relate to cooperative 
displacements that are evolutionarily optimized/selected to achieve function; whereas those in the other end 
of the spectrum correspond to high frequency fluctuations undergone by the most severely confined (often 
high conserved, core) residues of the protein17-20. Therefore, to predict the modes of motion of a protein via 
GNM, only two simple steps are required: First, the connectivity information from the known structure in 
the PDB is transferred into matrix form, constructing the Kirchhoff matrix. Then, eigenvalue decomposition 
is performed directly on this matrix to separate the fluctuations into distinct modes of motion and evaluate 
the dynamic features driven by these modes, as in Equation (8).  

GNM has been the first of a series of elastic network models (ENMs) that have been proposed in the 
succeeding 4-5 years, and since then several variations have been proposed. Of particular interest is the 
broadly used Anisotropic Network Model (ANM) introduced by Bahar and her collaborators21. Unlike 
GNM, which assumes an isotropic motion, ANM accounts for anisotropic motions within a 3N-dimensional 
configurational space. The Kirchhoff matrix is replaced in this case by a Hessian that can be readily 
expressed by a simply analytical expression (without the need to carry out energy minimization) using PDB 
coordinates to define equilibrium conformation21. Note that the original derivation of the ANM, based on a 
force balance at each node, differs from that of classical NMA, but the resulting expressions for the 
spectrum of normal modes are the same. The major difference is the use of uniform harmonic potentials for 
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Previous applications have shown that such motions driven by the slowest mode often relate to cooperative 
displacements that are evolutionarily optimized/selected to achieve function; whereas those in the other end 
of the spectrum correspond to high frequency fluctuations undergone by the most severely confined (often 
high conserved, core) residues of the protein17-20. Therefore, to predict the modes of motion of a protein via 
GNM, only two simple steps are required: First, the connectivity information from the known structure in 
the PDB is transferred into matrix form, constructing the Kirchhoff matrix. Then, eigenvalue decomposition 
is performed directly on this matrix to separate the fluctuations into distinct modes of motion and evaluate 
the dynamic features driven by these modes, as in Equation (8).  

GNM has been the first of a series of elastic network models (ENMs) that have been proposed in the 
succeeding 4-5 years, and since then several variations have been proposed. Of particular interest is the 
broadly used Anisotropic Network Model (ANM) introduced by Bahar and her collaborators21. Unlike 
GNM, which assumes an isotropic motion, ANM accounts for anisotropic motions within a 3N-dimensional 
configurational space. The Kirchhoff matrix is replaced in this case by a Hessian that can be readily 
expressed by a simply analytical expression (without the need to carry out energy minimization) using PDB 
coordinates to define equilibrium conformation21. Note that the original derivation of the ANM, based on a 
force balance at each node, differs from that of classical NMA, but the resulting expressions for the 
spectrum of normal modes are the same. The major difference is the use of uniform harmonic potentials for 
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Previous applications have shown that such motions driven by the slowest mode often relate to cooperative 
displacements that are evolutionarily optimized/selected to achieve function; whereas those in the other end 
of the spectrum correspond to high frequency fluctuations undergone by the most severely confined (often 
high conserved, core) residues of the protein17-20. Therefore, to predict the modes of motion of a protein via 
GNM, only two simple steps are required: First, the connectivity information from the known structure in 
the PDB is transferred into matrix form, constructing the Kirchhoff matrix. Then, eigenvalue decomposition 
is performed directly on this matrix to separate the fluctuations into distinct modes of motion and evaluate 
the dynamic features driven by these modes, as in Equation (8).  

GNM has been the first of a series of elastic network models (ENMs) that have been proposed in the 
succeeding 4-5 years, and since then several variations have been proposed. Of particular interest is the 
broadly used Anisotropic Network Model (ANM) introduced by Bahar and her collaborators21. Unlike 
GNM, which assumes an isotropic motion, ANM accounts for anisotropic motions within a 3N-dimensional 
configurational space. The Kirchhoff matrix is replaced in this case by a Hessian that can be readily 
expressed by a simply analytical expression (without the need to carry out energy minimization) using PDB 
coordinates to define equilibrium conformation21. Note that the original derivation of the ANM, based on a 
force balance at each node, differs from that of classical NMA, but the resulting expressions for the 
spectrum of normal modes are the same. The major difference is the use of uniform harmonic potentials for 
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are obtained by generalized Gaussian inte-
grations over all fluctuations as 

and 

Here k is the Boltzmann constant, T is the 
absolute temperature, and [ΓΓ-1]ij denotes 
the ijth element of the pseudoinverse of ΓΓ. 
The GNM lends itself to a unique evalua-
tion of normal modes for each structure, 
upon eigenvalue decomposition of ΓΓ, as 
ΓΓ=UΛUUΛUT, where UU is the N x N matrix of 
eigenvectors [uu0   uu1   uu2  … uuN-1], and Λ is the 
diagonal matrix of eigenvalues comprised 
of the zero eigenvalue (λ0=0), and non-
zero eigenvalues organized in ascending 
order λ1≤λ2≤λ3≤⋯≤λN-1, scaling with the 
frequency of individual modes. The N ele-
ments of the eigenvector uuk describe the 
normalized displacements of the N resi-
dues along the kth mode. Often times, a 
few modes at the low frequency end of the 
spectrum (e.g., k=1-3), also called global 
modes, make a dominant contribution to 
the overall dynamics. The fluctuations profile 
of residues in these modes reflect the resi-
due displacements in the most cooperative 
motions that embody the entire structure. 
The contribution of three slowest modes to 
<(ΔRR) >, for example, is given by

Previous applications have shown that 
such motions driven by the slowest mode 
often relate to cooperative displacements 
that are evolutionarily optimized/selected to 
achieve function; whereas those in the other 
end of the spectrum correspond to high fre-
quency fluctuations undergone by the most 
severely confined (often high conserved, 
core) residues of the protein17-20. Therefore, 
to predict the modes of motion of a protein 
via GNM, only two simple steps are required: 
First, the connectivity information from the 
known structure in the PDB is transferred 
into matrix form, constructing the Kirchhoff 
matrix. Then, eigenvalue decomposition is 
performed directly on this matrix to separate 
the fluctuations into distinct modes of motion 
and evaluate the dynamic features driven by 
these modes, as in Equation (8). 

GNM was the first in a series of elastic 
network models (ENMs), with others being 
proposed in the following 4-5 years and 
several variations developed since then. 
Of particular interest is the broadly used 
Anisotropic Network Model (ANM) intro-
duced by Bahar and her collaborators21. 
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Previous applications have shown that such motions driven by the slowest mode often relate to cooperative 
displacements that are evolutionarily optimized/selected to achieve function; whereas those in the other end 
of the spectrum correspond to high frequency fluctuations undergone by the most severely confined (often 
high conserved, core) residues of the protein17-20. Therefore, to predict the modes of motion of a protein via 
GNM, only two simple steps are required: First, the connectivity information from the known structure in 
the PDB is transferred into matrix form, constructing the Kirchhoff matrix. Then, eigenvalue decomposition 
is performed directly on this matrix to separate the fluctuations into distinct modes of motion and evaluate 
the dynamic features driven by these modes, as in Equation (8).  

GNM has been the first of a series of elastic network models (ENMs) that have been proposed in the 
succeeding 4-5 years, and since then several variations have been proposed. Of particular interest is the 
broadly used Anisotropic Network Model (ANM) introduced by Bahar and her collaborators21. Unlike 
GNM, which assumes an isotropic motion, ANM accounts for anisotropic motions within a 3N-dimensional 
configurational space. The Kirchhoff matrix is replaced in this case by a Hessian that can be readily 
expressed by a simply analytical expression (without the need to carry out energy minimization) using PDB 
coordinates to define equilibrium conformation21. Note that the original derivation of the ANM, based on a 
force balance at each node, differs from that of classical NMA, but the resulting expressions for the 
spectrum of normal modes are the same. The major difference is the use of uniform harmonic potentials for 
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by definition refer to the directions of motions 
that require the least energy ascent near the 
original energy minimum, may as well point 
to such easily accessible substates that may 
be located within the same global minimum 
in the smoothed-out surface. This is the 
first advantage of coarse-graining, that of 
eliminating local barriers which might oth-
erwise form traps on the energy landscape. 
Secondly, the ENMs are mathematically 
exact, i.e. they provide a unique analytical 
solution for each structure defined by its 
complete topology of inter-residue contacts. 
The loss of physicochemical accuracy is 
therefore partly compensated by the math-
ematical rigor of the network analysis, which 
helps identify the most cooperative direc-
tions of reconfiguration uniquely favored by 
the overall architecture. Thirdly, it is worth 
noting that these directions are by definition 
those favored by the conformational entropy 
of the overall architecture, which calls atten-
tion to the significant driving force of entropy 
maximization in dominating the movements 
accessible for achieving function.

Yet, the lack of atomic details, and the 
need to consider residue specificity, espe-
cially near active regions of proteins or at 
drug-binding pockets has been a drawback 
for the utility of ENMs in specific applications, 
which led to the development of hybrid 
approaches as described next.

Enhancing conformational sampling 
in all-atom MD simulations and 
docking simulations

ENMs predict low-frequency movements 
but do not capture events at atomic resolu-
tion because the system is coarse-grained 
to N nodes (interaction units) from the M total 
number of atoms, and the use of uniform har-
monic potentials is a major simplification that 
overlooks residue specificity. Consequently, 
the degrees of freedom, and thus the num-
ber of modes, decrease from 3M-6 to 3N-6, 
and all non-linear interactions are neglected. 
For this reason, all-atom details are absent 
in the ENM predictions. As described previ-
ously, the global motions predicted by ENMs 
show good agreement with those sampled 
through computationally highly demanding 
extensive MD simulations,4 which have 3M 
degrees of freedom, and this is partly due to 
the dominant effect of entropy and the fact 
that ENMs take rigorous account of overall 
connectivity or topology of contacts. 

Recent advances in computational soft-
ware and hardware have expanded the 
standard system size and simulation lengths 
for all-atom MD simulations to roughly 
100,000 atoms and several hundred nano-
seconds, respectively. However, for system 
sizes of about 1 million atoms and larger, 
the number of reported all-atom MD studies 

large-scale conformational transitions of the 
protein required for substrate transport. This 
approach highlighted that the presence of 
the membrane not only lowers the overall 
energy required for these transitions but 
also selectively modulates the motions of the 
transporter, thereby providing a more com-
prehensive understanding of the protein’s 
dynamics in its native environment.34

How does a simple linear model 
provide a reasonable description of 
conformational behavior?

It is important to note that the ANM pre-
dicts movements within an energy well, by 
definition. So, one may wonder how it is pos-
sible to achieve a high correlation between 
ANM-predicted modes of motion and the 
conformational transitions observed experi-
mentally between two substates presumably 
separated by an energy barrier. The answer 
lies in three facts: first, coarse-graining 
smooths out the energy surface such that 
substates separated by a low energy barrier 
(which are often required for transient events 
such as alternating access here) could be 
even merged within a shallow global mini-
mum. The slowest modes of motion, which 

extracellular (EC) and intracellular (IC) vesti-
bules, respectively. These transitions enable 
the binding of substrates in the OFo state 
and their release in the IFo state, thereby 
completing the transport cycle. By exam-
ining the collective dynamics of monomers 
and dimers, the study revealed that dimer-
ization induces specific modes of motion 
that facilitate these functional transitions. 
This marked the first instance of using ANM 
to provide a detailed mechanistic under-
standing of how oligomerization modulates 
the intrinsic motions of protein monomers, 
thereby playing a vital role in their biological 
function. The findings underscore the impor-
tance of protein oligomerization in achieving 
efficient substrate transport, providing val-
uable insights into the structural dynamics 
of NSS proteins and their functional optimi-
zation through dimerization. Furthermore, 
the ANM analysis also demonstrated the 
significant effects on protein dynamics due 
to protein-membrane couplings. Specifically, 
the incorporation of membrane constraints 
into ANM, as evidenced in the study of 
the glutamate transporter GltPh, revealed 
that the constraints imposed by the mem-
brane selectively guide and facilitate the 

Figure 2: Residue fluctuations of PR65, the scaffolding subunit of the phosphatase 
PP2A. Residue fluctuation were obtained from GNM30, all-atom MD simulations31 and 
ANM analysis of the monomeric PR65, while the B-factors for PR65 are reported for 
the homo-dimeric PR65 X-ray structure (PDB ID 1B3U32). Magnitudes were normalized 
with respect to MD simulations. The PR65 structure (PDB ID: 6NTS33) is shown in a 
cartoon representation, with the magnitude of residue fluctuations observed in MD 
simulations color-coded from blue (lowest) to red (highest, at the N-terminus, with 
green indicating relatively large fluctuations. The periodicity of fluctuations originates 
from the tandem repeat (TR) structure of PR65 which is composed of 15 HEAT 
repeats.
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Leucine transporter (LeuT), a bacterial mem-
brane protein and an important ortholog of 
neurotransmitter transporters in humans 
as mentioned above, coMD successfully 
enabled the sampling of the conformational 
transition between its extreme endpoints, 
the OFo and IFo structures at full atomic 
resolution.40 Subsequently, by initiating unbi-
ased simulations from intermediate confor-
mations across the transition, the free energy 
surface of LeuT's functional dynamics was 
generated (Figure 4).40

Hybrid methods have also found utility 
in the incorporation of receptor flexibility in 
docking studies. For example, ClustENMD 
approach combines deformation of struc-
tures along ANM modes, clustering and 
relaxation simulations using standard MD41. 
The utility of this method in ensemble 

on integrated ENM and MD simulations 
demonstrated enhanced computational 
efficiency across three different techniques 
without sacrificing accuracy.38 These meth-
ods initially focused on sampling enhance-
ment, but their extensions have also proven 
effective in delivering accurate predictions 
of the free energy variations and surfaces 
related to functional protein motions. For 
example, the Collective MD (coMD)39 meth-
odology harnesses collective modes of 
motion encoded by the fold and evaluates 
interactions and energetics through MD sim-
ulations. The core strategy involves selecting 
ANM-predicted modes using a Monte Carlo/
Metropolis algorithm, collectively deform-
ing the structure along these modes, and 
directing all-atom MD simulations to sample 
collective changes in the overall structure 
at an atomic resolution. In the case of the 

are scarce, and the simulation times, often 
limited to microseconds, can become insuf-
ficient. Owing to the correlation between 
ENM-predicted global modes and protein 
functional dynamics, hybrid MD simulation 
techniques36,37 that incorporate ENM modes 
to enhance conformational sampling, have 
become increasingly popular. ENM-MD 
hybrid methods employ ENM-predicted 
global modes to depict large-scale motions, 
such as domain rearrangements, while deliv-
ering atomic coordinates and taking account 
of detailed residue-specific energetics via 
all-atom MD simulations. Hybrid methods 
facilitate a natural selection of reaction coor-
dinates guided by the ENM modes intrin-
sically accessible to the protein fold, while 
also incorporating non-linear effects that are 
absent in ENM calculations. In fact, a recent 
critical evaluation of hybrid methods based 

Figure 3: The ability of ANM modes to predict the IF ↔ OF transition for monomeric and dimeric dopamine transporter (DAT). 
The bars represent the correlation cosines, cos(d, uk), between the motions driven by the individual modes (10 slowest modes, 1 ≤ 
k ≤ 10, along the abscissa) and the deformation vector dd = RR(IFo) – RR(OFo) experimentally observed between the IF open and OF 
open states of DAT in either direction, starting from (A) OF open and (B) IF open structures. Results for the protomers in the DAT 
dimer and the DAT monomers are indicated by the respective green and light-blue bars. The ribbon diagrams illustrate the collective 
motions driven by ANM mode 3 (A) and mode 4 (B) that achieve the highest correlation cosine with experiments. DAT monomers 
used as input were taken from MD simulations35 and dimers were built29 using them. For further details, please refer to Gur et al.29



164  |  June 2024 www.facs.website

simulations in hybrid simulations. The inte-
gration of ENMs with MD simulations and 
cryo-EM is currently a broadly pursued area 
toward enabling detailed insights into pro-
tein conformational landscapes and func-
tional mechanisms. As computational and 
experimental techniques continue to evolve, 
ENMs will undoubtedly play a crucial role in 
advancing our understanding of complex 
biological systems. Their ability to bridge 
the gap between computational efficiency 
and biological accuracy makes them key 
in the ongoing quest to solve the molecular 
details of life. The future of ENMs lies in their 
continued refinement and application across 
diverse biological contexts, promising even 
greater contributions to the field of struc-
tural biology, in tandem with advances in 
experimental characterization of structures 
or contact topologies at multiple scales. A 
recent example along such directions is the 
GNM-based evaluation of chromosomal 
dynamics based on contact between gene 
loci collected by Hi-C technology for entire 
genomes, allowing for the first time a struc-
ture-based understanding of cell-specific 
gene expression and gene-gene correla-
tions patterns for the entire chromatin.47-49

providing a comprehensive view of the struc-
tural dynamics. Another approach is the 
combination of MD simulations with ENMs, 
such as the MDeNM-EMfit45 method. This 
technique involves performing MD simu-
lations driven by ENM-predicted normal 
modes describing collective motions, while 
refining local elements through full atomic 
force field representations. This hybrid 
method enhances the sampling efficiency 
and accuracy of conformational landscapes 
derived from cryo-EM data by progressively 
directing the sampling toward conformations 
with higher correlations with the experimen-
tal cryo-EM maps. 

Conclusion
The journey of ENMs from theoretical 

constructs to indispensable tools in compu-
tational biology underscores their profound 
impact on the study of protein dynamics. 
ENMs, with their simplified harmonic approx-
imations, provide a robust framework for 
understanding the intrinsic motions and flexi-
bility of proteins. The ENM-based application 
programming interface ProDy46 has met an 
important need in the structural and com-
putational biology community, evidenced 
by its broad usage worldwide. This review 
has highlighted the significant milestones in 
the development of ENMs, from the GNM 
to the ANM, their applications in predicting 
experimental observations and their utility 
in their combined use with all-atom MD 

docking lies in its ability to yield a spectrum 
of conformations for the docking target. This 
has been demonstrated in predicting ligand 
binding to highly flexible receptors42 as well 
as protein-protein/DNA associations43. 

Combining strength of ENMs and 
Cryo-Electron Microscopy in the era 
of cryo-EM resolution revolution

Cryo-electron microscopy (cryo-EM) 
is a technique that has gained increased 
importance in recent years, as it now allows 
for the determination of large biomolecu-
lar structures at near-atomic resolution by 
flash-freezing samples and capturing images 
using an electron microscope. This method 
generates high-resolution 3D structures 
of macromolecular complexes, providing 
detailed structural information on alternative 
substates, but often lacking dynamic and 
temporal insights into the mechanisms of 
passages between those substates. To 
combine the strengths of cryo-EM structure 
determination and ENM analysis of collective 
dynamics, various hybrid methodologies 
have been developed.37 One of them is the 
Hybrid Electron Microscopy Normal Mode 
Analysis (HEMNMA)44, which integrates 
NMA with cryo-EM data. HEMNMA uses 
the global motions predicted by ENMs to 
deform structures into conformations that fit 
the cryo-EM density maps. This approach 
enables the extraction of continuous con-
formational changes from cryo-EM data, 

Figure 4: Free energy surface of LeuT obtained through the combined use of ENM and MD simulations via coMD. Left panel: 
The free energy surface is shown as a function of the degree of EC and IC vestibules’ openings. Refer to Gur et al.40 for details. Right 
panel: Molecular structure of the outward-facing (OFo) LeuT dimer in the presence of membrane and solvent. Residues used to 
define EC and IC vestibules are shown in red and green respectively.
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