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Light matter interaction
Light matter interaction is ubiquitous in biology. When we 

think about photo-processes in biology, we immediately 
think of processes such as photosynthesis, light harvesting, 
vision, as well as skin photoprotection, DNA damage etc. [1] 
[2] Prebiotic chemistry is also rife with examples of light matter 
interaction. Therefore, light and its interaction with chemical 
species are crucial in the genesis and continued success of life 
itself. Researchers have also been interested in understanding 
these molecular mechanisms to leverage it towards biomimetic 
solutions (one such important photoprocess and its 
computational approach is shown in Fig. 1).
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(b) Figure 1: (a) Cycle of processes 
after light irradiation on light 
gated channel proteins. (b) The 
computational approaches to 
understand the first optically 
activated step requires an 
in-depth understanding of the 
ground and excited states. 
The steps involved in a typical 
computation towards that are 
shown. 
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Figure 2: The different length scales that are present in biological systems. Often one requires multiscale modelling to address the 
different aspects of the problem.

Figure 3: Formation of matrix product state ansatz from an exponentially scaling full 
configuration interaction wavefunction ansatz. The connection between the two are 
successive singular value decompositions that enable one to retain only the most 
important degrees of freedom. Both the full configuration interaction and matrix 
product state ansatz can be determined using machine learning techniques. The 
learning process occurs on data degenerated from Monte Carlo approaches.

It is evident that light activated chemistry 
is inherently different from ground state 
reactivity. Light gives us access to certain 
spectroscopically allowed excited states of 
the reactants and subsequently the reac-
tivity under irradiation follows the electronic 
structure of the reactants and products in 
these excited states. Since the electronic 
structure of ground and excited states of the 
reactants and products vary, their reactivities 
can therefore, be significantly different with 
and without irradiation. However, the excited 
states are short-lived, since all these pro-
cesses have to compete with radiative decay 
processes such as fluorescence or phos-
phorescence etc. That is any successful 
reaction in excited state has to be completed 
before the molecule relaxes back via other 
dissipative processes. Thus, excited state 
reactions are often extremely fast and that 
is what makes it so effective in biology. But 
at the same time, this same reason makes 
it excruciatingly difficult to probe experimen-
tally. Most of the intermediates thus formed 
are so short lived that they can seldom be 
captured and probed successfully. [3]

Further difficulties can be envisaged 
from the differential reactivities and electron 
densities in ground and excited states. [4] [5] 

Chemists have long relied on empirical rules 
and understanding of reactivities to under-
stand mechanisms of reactions. However, 
these rules are based on ground state spe-
cies and their electronic structures. Since the 
electronic structure of the excited states of 
the same species are significantly different, 
the empirical rules also need to be updated 
with this knowledge for its successful imple-
mentation in light activated processes. 

Computational methods to 
understand excited states

Since experimental understanding of 
excited state phenomena and reactions are 
often quite challenging, computational tools 
are increasingly being used to understand 
these processes in tandem with experimental 

observations. Computational chemistry and 
biology, augmented by machine learning 
is quickly becoming a powerful tool. It is a 
computational chemist’s dream to string 
together the different processes to recreate 
the many stages of these photo-processes 
in biology. 

It should be noted that the study of the 
excited state processes in chemistry and 
biology started with the ability to control 
pulsed radiation and study the excited state 
processes at different time scales. [6] [7] [8]  
However, over the last decade we have wit-
nessed impressive new developments in 

the field of computer architecture, machine 
learning and artificial intelligence. Google 
DeepMind has started developing a variety 
of artificial intelligence technology, Alpha Go 
managed to beat a human being in Go. And 
of late Alpha fold has predicted the structure 
of millions of proteins which other technology 
has struggled to predict over many decades. 

In the same line, we have witnessed the 
increased use of machine learning in chem-
ical and bio-chemical problems. [9] [10] [11] [12] [13] 

[14]   Research in this direction started from 
the need to predict properties of molecules 
and materials. However, it has evolved into 
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Figure 4: Effective fragment potential can be used as a sophisticated polarizable force field that is calculated from a priori ab initio 
methods. This ab initio approach allows one to develop effective fragment potentials for any molecule with required accuracy which 
can then be used in a hybrid framework with high-level quantum chemistry methods as detailed in Ref. 26.

the more challenging and certainly more useful 
inverse design problems. [15] [16] [17] Therefore, 
it is only natural that we would like to use 
machine learning and advanced computa-
tional techniques to excited state chemical and 
bio-chemical processes. 

Apart from this almost natural progres-
sion, excited state chemistry and electronic 
structure is also an ideal playing field for big 
data problems. The hallmark of excited state 
chemistry is that electrons in this regime are 
invariably strongly correlated with each other. 
If in a ground state situation, an electron can 
interact with only the few electrons in its vicinity, 
i.e., local picture, in the excited state they can 
interact with a large number of electrons far 
away from each other. This can alternatively be 
viewed from an orbital picture. The orbitals in 
the virtual space (i.e., unoccupied in the ground 
state) are closer to each other in energy and 
therefore, an electron when present in those 
orbitals interact with the other electrons in 
the neighboring orbitals more strongly. As a 
result, the bedrock mean field approximations 
in chemistry becomes qualitatively incorrect. 

[18] Therefore, in this regime, one needs to 
consider the effects of electrons in various 
configurations, i.e., distributed among differ-
ent orbitals to understand the excited state 

electronic structure. However, the number of 
such configurations grows exponentially with 
the size of the system and biological systems 
are seldom small. Therefore, one can resort 
to machine learning augmented big data 
directions to understand such systems. [19] [20] 

[21] Our group is among the few in the world 
delving in this direction and have applied 
this to realistic molecular systems (scheme 
shown in Fig. 3).

Furthermore, due to the size of biological 
systems a purely quantum mechanical treat-
ment is not affordable. Fortunately, neither is 
such a treatment necessary. Most biological 
systems and excited state phenomena have 
an active site, where the maximal electron 
density change occurs or bonds are broken 
and formed (shown in Fig. 2).  Therefore, a 
natural strategy to treat such systems is to 
use a hybrid quantum mechanical / molec-
ular mechanical (QM/MM) approach. [22] In 
this hybrid approach, the active site is treated 
quantum mechanical and the rest of the sys-
tem effectively provides a field that changes 
the energetics of the active site. However, in 
case of excited state phenomena, where the 
charge density can be significantly different 
from the ground state, such a hybrid method 
requires the consideration of second order 

effects, such as polarization. Therefore, we 
use a sophisticated polarizable method 
called the effective fragment potential (EFP) 
to adequately treat such systems. [23] Hybrid 
QM/MM methods that use high-level quan-
tum mechanical methods, such as equation 
of motion coupled cluster with polarizable 
force fields have been quite effective for 
most of the biologically relevant excited state 
processes (shown in Fig. 4). [24] [25] [26]

However, polarizable force fields are typi-
cally quite expensive computationally due to 
the need for self-consistent solution of the 
charge densities. In order to provide accu-
rate and fast methods, we have developed 
machine learning based polarizable force 
fields. Here, physics-based machine learn-
ing circumvents the need to self consistently 
solve the charge densities and the induced 
dipole moments. [27]

With the methods developed in the group 
as well as other high-level methods, our 
group focuses on a few biologically relevant 
problems. These include photophysics of 
skin-pigment melanin, interactions in fluo-
rescent proteins and their analogues, low 
lying states of conjugated moieties and 
singlet fission.
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Photo-physics of melanin
Melanin is the skin pigment present in 

most animals and human beings (Fig. 5a). 
It is also present in several plants and are 
mainly concerned with protection from the 
sun light. Due to this central property of pho-
to-protection, melanin is capable of absorb-
ing light over the entire UV and visible range. 
The melanin spectrum is unusually mono-
tonic and extremely broadband. [28] While 
this broadband spectrum allows melanin 
to be an effective absorber of sunlight, this 
makes it difficult to study the structure and 
functions of melanin with the usual tools of 
spectroscopy. 

Therefore, computational tools have 
become one of the important ways to delve 
into the structure and structure-function 
correlation of melanin. [29] There are initial 
indications of heterogeneity playing a crucial 
role in the broadband spectra of melanin. 

[28] In our group, we have worked on under-
standing the decay channels and pathways 
of photoprotection after the initial excitation 
by UV light. [30] Using a bottom-up approach 
of studying each of the monomers, dimers 
etc. of the system, we ascertain the detailed 
photoprotection mechanism. We observe 
that heterogeneity plays an important role 
in this mechanism. Here, it should be noted 
that melanin is a heterogeneous polymer 

formed from the basic monomer di-hydroxy 
indole and its oxidized forms. There is also 
the presence of its carboxylic acid deriv-
atives. The different oxidized forms play a 
crucial role in the photoprotection pathways. 
From the study of the critical structures in 
the excited states, and the low-lying conical 
intersections (i.e., geometries where there 
are energetic degeneracies between the 
ground and excited state), it is noticed that 
in di-hydroxy indole the major molecular 
modes are OH bond elongation and out-of-
plane puckering modes. The out of plane 
puckering mode causes exclusive pho-
to-protection and fast quenching of energy. 
The OH bond elongation mode is therefore, 
the only pathway for photochemical reaction. 
However, this photochemical reaction gives 
rise to one or other of the oxidized forms 
of melanin itself. On the other hand, the 
oxidized monomers upon excitation either 
quenches fast, or interconverts between 
each other. Therefore, it can be posited 
that the monomers of melanin interconvert 
between each other upon excitation and all 
photochemical processes within monomers 
still retains in structural heterogeneity (shown 
in Fig. 5b). 

While the importance of structural hetero-
geneity towards its photoprotection property 
have been hypothesized from the monomer 

studies, it has also been observed in the 
dimers and higher oligomers. [31] The effects 
of small molecules on these pathways have 
been studied. Here, it should be noted that 
the success of melanin photo-processes lies 
in the large number of low energy probable 
pathways. When a small molecule comes 
close to the melanin framework, the ener-
getics of each of these pathways change. 
However, since there are numerous possible 
pathways, there always exists one or more 
pathway that is ultrafast in nature. With these 
computational studies, we have therefore, 
delved into the many mysteries of melanin 
photochemistry and have unearthed the 
reason behind its success. [32]

Fluorescent protein
Photoreceptor proteins and fluorescent 

proteins have been studied extensively from 
a molecular perspective. [33] There have been 
several artificially engineered fluorescent 
proteins as well as new fluorescent pro-
teins in nature that can be leveraged as 
bio-markers for different properties. In our 
group, we have been interested in the effect 
of neighboring amino acids towards tuning 
the absorption and fluorescence spectra of 
these fascinating systems. [34] [35]  

The chromophore responsible for fluores-
cence in green fluorescence protein (GFP) is 
p-hydroxy benzylidene imidazolinone (HBDI). 
We have studied the substituted HBDIs, 
especially the fluorine substituted one – 
DF-HBDI. DF-HBDI is known to intercalate 
in RNA spinach and senses the presence of 
G-quadruplex structure in its vicinity (shown 
in Fig. 6). It was hypothesized that the result-
ant red shift in the spectra of DF-HBDI was 
due to the p-stacking interactions between 
the G-quadruplex and the DF-HBDI mol-
ecule. However, using extensive high-level 
QM/MM calculations we were able to show 
that while the structure is stabilized due 
to the p-stacking interactions, the shift in 
spectra is due predominantly to the long-
range electrostatic interactions rather than 
the short-range p-stacking effects.

Furthermore, the reason why p-stacking 
is less important in the resultant spectral 
shift is due to the extreme sensitivity of the 
wavefunction on the structure which under-
goes fluctuation at room temperature. This 
new understanding brings to scrutiny much 
of the earlier results on the importance of 
p-stacking interactions in other fluorescent 
proteins. [36]

Polyaromatic hydrocarbons and 
singlet fission

Low lying states and singlet-triplet gaps of 
polyaromatic hydrocarbons have long been 
a fascinating problem that cannot be under-
stood within the confines of single reference 

Figure 5: (a) The structure of melanin in skin pigment. It is a heterogeneous polymer 
containing di-hydroxy indole species. (b) The excited state photoprocesses of the 
constituents of melanin as elucidated from computational studies. The structural 
heterogeneity is crucial to its ultrafast photoprocesses.
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molecular orbital theory. The inadequacy 
of single reference theory arises from the 
strong correlation between the electrons in 
their valence space constituted by the p and 
p* orbitals. The frontier orbitals can be pseu-
do-degenerate as the system size increases 
and that manifests itself in interesting sin-
glet-triplet gaps, triplet stability inversion etc. 
They have important implications in singlet 
fission and magnetic materials.

We apply a combined approach of simple 
model Hamiltonians with density matrix 
renormalization group [37] to understand 

the singlet-triplet gaps in these systems. 

[38] [39] We have noticed the delicate balance 
between static and dynamic correlation that 
is required to adequately handle such sys-
tems with quantitative accuracy. Recently, 
we have seen the effect of spin frustration 
and topology that is central to the singlet-tri-
plet gaps in these systems, especially in the 
cases containing odd number of rings. The 
effect of spin frustration and topology can 
be leveraged to engineer molecules with 
different singlet-triplet gaps in a very con-
trolled manner. 

The importance of these low-lying states 
of varied electronic nature have been elu-
cidated in the singlet fission phenomena. 

[40] Unlike in case of the acenes, we have 
noticed that polyenes are even more versa-
tile. In polyenes, many different symmetry 
states with charge transfer components are 
crucial to the success of singlet fission phe-
nomena. The greater versatility of the pol-
yenes may be central to the effective singlet 
fission process in many different geometries 
and crystal structures. 

The way forward
We are entering the realm of combined 

use of machine learning and traditional 
computational approaches. Many of the 
problems stated above can be understood 
and taken to predictive capabilities with 
machine learning. For example, the use of 
machine learning for structure elucidation is 
becoming extremely popular and can be an 
invaluable tool for structure determination in 
melanin. This will be a holy grail of melanin 
research. Machine learning is also increas-
ingly effective towards prediction of proper-
ties and perhaps, more crucially, towards 
inverse design of systems and materials with 
the desired properties. Furthermore, more 
accurate and computationally affordable 
computational chemistry approaches to 
treat such excited state phenomena are the 
need of the day. 

Figure 6: Fluorescent chromophore 
intercalated in RNA spinach. The 
QM and MM regions denote the 
computational strategy used for the 
hybrid treatment as given in Ref. 36.
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