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PLANNING SYNTHESES 
OF complex organic molecules is, 
arguably, the pinnacle of chemical 
research, sometimes compared to 
an art requiring not only knowledge 
but also inspiration. Since syntheses 
of natural products such as vinigrol, 
perseanol, or daphlongamine H are 
extremely nuanced and challenging 
even to the world’s top-level synthetic 
chemists, it is perhaps not surprising 
that these chemists have long sought 
computer’s help, trying to codify the 
discipline’s knowledge and strategic 
thinking, and casting “inspiration” in 
the form of rigid algorithmic rules. The 
first ideas1 and actual programs2 for 
computer-aided synthesis emerged 
already in the 1960s and – at least at 
that time – it seemed that machines 
would be conquering the “art of syn-
thetic chemistry” any day. Yet, years 
have passed and the programs kept 
faltering – their synthetic predictions 
failed in the laboratory3,4 or were 
applicable only to some simple tar-
gets5 for which a trained chemist 

does not really need machine’s help. 
Meanwhile, computers managed 
to conquer even the most intricate 
games of strategy – in 1997, IBM’s 
DeepBlue defeated the reigning world 
champion, Garry Kasparov, in chess, 
and in 2016, Google’s AlphaGO6 
meted out a crushing defeat to GO’s 
weltmeister, Lee Sedol. Given that 
Google has recently demonstrated 
similar feats of AI and deep learning 
in natural sciences – for instance, 
in protein folding7—it might be puz-
zling and frustrating why no news of 
similar successes have been forth-
coming for organic syntheses. To be 
sure, it was not for the lack of trying 
as various AI methods have been 
unleashed on the problem8,9,10– it is 
just that advanced synthetic design 
turned out to be a tougher nut to 
crack than either chess or GO! The 
breakthrough came only recently 
when a program called Chematica 
(a.k.a. Synthia™) designed syntheses 
of complex natural products (Figure 
1) with precision and elegance the 

world’s leading chemists judged to 
be indicative of human, expert-level 
planning.11 The first part of this article 
aims to narrate how this was achieved 
and why the problem turned out to 
be so difficult to tackle, taking us 
some 20 years of concerted effort.12-19 
The second part goes further and, 
inspired by Chematica’s success in 
retrosynthesis, outlines other areas of 
synthetic chemistry in which comput-
er-driven approaches – in particular 
forward-synthesis combined with 
property prediction – can make a 
profound and lasting impact: In the 
Origins of Life, in green chemistry, in 
the generation of molecular diversity, 
or in the prediction of synthesizable 
drug candidates. These applications 
are already taking shape and they are 
changing the face of modern organic 
chemistry, boosting the creativity of 
individual chemists with analyses at 
scales available only to the machines. 
Immanuel Kant’s famous critique of 
(synthetic) chemistry as lacking math-
ematical rigor no longer applies, and 
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the art of making molecules is finally becoming 
an algorithmic science. 

The challenge of retrosynthesis
Let us begin with retrosynthesis – that is, a 

process in which a desired, often very complex 
organic molecule of interest is disconnected 
into smaller fragments, which are then discon-
nected further and further until reaching some 
simple and preferably commercially available 
substrates. The rules for retrosynthetic analysis 
by humans were codified half a century ago 
by E.J. Corey20 who then attempted to apply 
them to automatic synthetic planning21 – alas, 
as mentioned above, with little success3,4 and 
only in a semi-automatic fashion whereby the 
machine provided all possible reactions for 
each retron while the user had to make his/her 
choices and construct the pathway. When we 
started working on the problem some 20 years 
ago, we were pondering how the process 
could be fully automated. We identified three 
interrelated components of what later was to 
become known as Chematica (Figure 2): (1) 
The rules describing chemical reactions; (2) 
The algorithms that would iteratively apply 
these rules to the retrons to generate the 

synthons and, ultimately, the networks of syn-
thetic possibilities; and (3) the so-called scoring 
function(s) that would guide navigation of this 
network, preventing “combinatorial explosion” 
and concatenating individual reactions into 
complete pathways. 

The rules of the game: reactions
Without repeating our recent reviews on 

the subject,15,17 we note that the number of 
rules required for versatile chemical planning 
turned out to the be rather high, on the order 
of 100,000. Each of these rules describes a 
reaction class (or variant) by the “core” atoms 
that change during the reaction as well as 
some flanking atoms (the “environment”). The 
reaction “template” is written in the so-called 
SMILES/SMARTS notation and must carefully 
delineate the scope of admissible substitu-
ents – this information can, conceivably, be 
retrieved from large databases of published 
reaction examples, and for this purpose it 
is very tempting to use automated template 
extraction methods which were available 
already in the early 2000s.22 Unfortunately, 
literature-extracted rules do not a priori know 
how widely to define the “environments” (so 

that they are appropriate to a given reaction 
type), or how to account accurately for incom-
patible groups (by default, not present in pub-
lished, successful syntheses). If the rules are 
subsequently applied to molecules featuring 
such groups, the machine does not recog-
nize them as problematic and can suggest 
reactions that, in reality, would fail (for detailed 
discussion, see 17). 

Mindful of such considerations, we decided 
to code the reaction rules “by hand,” inspecting 
the underlying mechanisms, determining suit-
able reaction conditions, and then determining 
which of as many as 400 possible functional 
groups should be marked as potentially incom-
patible. In doing so, we focused on reactions 
that were really useful in synthetic practice, 
validated by many (and preferably reputable) 
groups, and transferrable to different scaf-
folds (i.e., we generally avoided “one trick 
pony” reactions that might work only for a 
very specific scaffold but not for other mole-
cules). In some sense, we decided to make 
our Chematica a conservative planner. This 
assumption was more than a scientific choice 
– it was, in large part, a “political” decision 
addressing a rather widespread disbelief in 
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the prospects of computer-assisted synthe-
sis. Over the years, we have seen many times 
how a single mistake in Chematica’s planning 
would trigger a triumphant “see, it does not 
work!” reaction (often from colleagues whose 
own human-designed syntheses failed mul-
tiple times). We realized that for Chematica 
to become an adopted child of the synthetic 
community, its reaction rules and synthetic 
suggestions must be very robust, even at the 
expense of occasionally missing some inspired 
but risky solutions. 

It took us about a decade to code as many 
as 100,000+ high-quality chemical rules and 
then to further fine tune them to predict subtler 
chemical effects. To this end, we combined 
expert-coded knowledge base with quantum 
mechanical calculations (e.g., to determine 
electron densities at proposed reaction sites17) 
and also with machine learning models which 
provided more accurate predictions of site-, 
regio- or diastereoselectivity.23 Importantly, 
we developed such models for separate reac-
tion classes, for which there were adequate 
numbers of literature examples (thousands). 
Also, as descriptors we used physical-or-
ganic measures such as Hammett constants 
and steric crowding indices, such that the 
models were taking into account chemically 
relevant effects (as opposed to only arbitrarily 
defined structural motifs, as in the so-called 
fingerprints; for discussion see 23). With these 
additions, the rules become a combination of 
expert-coded knowledge, advanced theory 

and modern AI – we began to refer to this mix 
as a “hybrid” approach.

The game itself: network navigation
Of course, the rules themselves were not 

producing any syntheses. As in chess, the 
knowledge of how to move a pawn, a rook, 
or a bishop does not translate into the ability 
to play the game. In chemistry, the “game” of 
retrosynthesis is how to choose chemically 
plausible pathways from the giant network 
of synthetic options. “Giant” here is not an 
exaggeration – with 100,000 rules, every ret-
ron can produce, in one step, on the order of 
100 synthons,11,15 each of these synthons can 
then produce ~100 progenies, and so on, until 
commercially available starting materials are 
reached. In n steps, this branching translates 
into 100n possible routes one can trace on 
the network. Even for simple drugs these 
numbers are very large (e.g., 1005 or ten billion 
options for a five-step synthesis), and for the 
syntheses of natural products they are just 
exorbitant, as n is typically in tens. Clearly, 
exhaustive exploration of such networks is not 
feasible and one must devise means for smart 
navigation – that is, functions that score the 
synthons and decide which synthetic moves 
are promising to take.

We started studying reaction networks in the 
early 2000s, even before we had any reaction 
rules ready. These early studies12 used static 
databases of published reactions turned into 
a network representation – that is, they were 

not networks of retrosynthetic options cre-
ated dynamically for a new target. However, 
even such mock-up models were useful as 
they allowed us to learn about network topol-
ogy, the optimal means of representing the 
reactions (in the so-called bipartite format, 
see inset to Figure 3), and about the search 
algorithms and rudimentary scoring functions. 
By ca. 2010, we had first such algorithms and 
functions implemented13,14,24 and showed how 
they could very rapidly traverse the network of 
published reactions (a.k.a. Network of Organic 
Chemistry, NOC) to construct pathways to tar-
gets as complex as zaragozic acid (Figure 3). 
Again, these pathways were just a patchwork 
of reaction steps published by different groups, 
but they were constructed by the machine 
without any human guidance.

In the 2010s, we finally combined this knowl-
edge of networks with the reaction rules and 
began to automatically plan new syntheses to 
arbitrary – i.e., known or unknown – molecule 
targets.15 The rules were applied to the retrons 
and expanded them into synthons. The scor-
ing functions then evaluated the options and 
ranked the synthons, marking those that were 
most promising and merited further expansion. 
In this way, the scoring functions guided the 
growth of the network (Figure 4) such as to 
avoid unproductive dead ends and trace plau-
sible syntheses as rapidly as possible. Over the 
years, the scoring functions evolved and were 
either (1) based on variables quantifying molec-
ular complexity (lengths of SMILES strings, 
number of rings, number of stereocenters),15 
or (2) used neural-network hybrids trained 
on examples of literature syntheses matched 
onto Chematica’s rules.19 Referring the reader 
to ref 19 for detailed discussion, we note that 
functions of type (2) were somewhat better 
in searching for synthetic routes resembling 
published approaches, whereas functions of 
type (1) were better in unbiased design, often 
suggesting more elegant and unprecedented 
solutions. 
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Figure 1. Chematica-designed syntheses leading to (a) Methyl Monate C and (b) Aplysin. These syntheses were 
evaluated by human experts in the Synthesis Turing Test described in ref. 11 from which the figure is adapted.

Figure 2. Main components of a synthesis planning 
machine: (green) rules describing chemical reactions, 
(blue) algorithms generating synthons and networks 
of synthetic possibilities, (c) scoring functions guiding 
network exploration and preventing “combinatorial 
explosion”. 
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Simple games: syntheses of drugs
In 2017, we finally put all these algo-

rithms to work. At that time, Sigma-Aldrich 
became interested in long-term sustenance 
of Chematica but they wanted to check if 
the program really works – that is, whether 
its predictions are verifiable in the laboratory. 
Accordingly, Sigma provided us with six mol-
ecules that presented a challenge to their 
own chemists. Could Chematica design more 
effective synthetic plans? We agreed to the 
challenge, added two molecules of our own 
choosing, and the entire set was committed to 
synthesis. Somewhat to everyone’s surprise, 
all of these syntheses worked in very good 
yields and without the need for tedious opti-
mization (see examples in Figure 5). We were 
jubilant, Sigma was convinced (and took over 
Chematica and began its worldwide marketing 
as Synthia), and we jointly published a paper 
describing the results.16 Yet, the synthetic com-
munity remained lukewarm. Even though this 
work was the first-ever successful validation 
of computer-designed plans, the targets were 
deemed too simple. Everyone still waited for 
the machine to compete at a real expert level 
– that is, plan syntheses of complex natural 
products. And, of course, we took up this 
challenge as well.

Advanced plays: natural products
From 2017 to 2020, we more than dou-

bled the knowledge-base of reaction rules (to 
the abovementioned 100,000+), including a 
large proportion of stereoselective reactions so 
important in advanced synthesis. We improved 
the scoring functions, and implemented search 
algorithms that now used multiple search strate-
gies simultaneously – for instance, one scoring 
function preferring diversity of approaches 
(“searching wide”), one putting premium on fin-
ishing the routes as rapidly as possible (“search-
ing deep”), and the two exchanging and learning 
from each other’s results. Unfortunately, even 
with these and other improvements reviewed 
in11, the critics seemed to had been right – the 
program was not robustly identifying routes to 
complex targets. 

Inspecting the results, we noted that 
Chematica – as all synthesis programs before 
it – was somewhat short-sighted. If it encoun-
tered highly unpromising synthons and could 
not find a worthy continuation in just one step, it 
simply withdrew from this branch of the network 
and did not try to strategize around the problem. 
What the program was obviously lacking was 
the ability to think several steps ahead, like the 
chess masters. Inspired by many classic syn-
theses designed by the masters of synthesis, 
we identified and implemented four types of 
multistep strategies: (1) sequences of steps that 
allowed the program to overcome local maxima 
of molecular complexity18 – that is, to complexify 
the synthons in one step but, by doing so, open 
up avenues for elegant, structure simplifying 
steps later on, (2) sequences that converted 

highly reactive to less reactive groups (a.k.a., 
functional group interconversions, FGIs) and 
thus reduced the numbers of potential chemical 
incompatibilities in the synthons; (3) “Bypasses” 
that first removed a conflicting group before 
trying a step that the program otherwise saw 
as very promising; and (4) “supersteps” in which 
certain reactions could be performed simulta-
neously, under the same reaction conditions. 
With these four types of strategies, Chematica 
finally become an expert-level planner, not only 
using these multistep strategies in separation, 
but also combining them into even longer, highly 
logical sequences, sometimes to the depth of 
five-six synthetic steps.

The improvement was immediately manifest 
in the program’s ability to plan syntheses to 
complex natural products11 as illustrated by 
the synthesis of Methyl Monate C in Figure 1a 
or the synthesis of Aplysin in Figure 1b, both 
of which are hardly discernible from routes 
that a human expert might design. In fact, in 
a recent paper on the topic,11 we assembled 
a collection of 20 Chematica-planned and 
20-literature published (in journals like J. Org. 
Chem., Org. Lett., Angew. Chem., or JACS) 
syntheses, redrew them in the same format, 
arranged in no particular order, and asked 
world-leading experts to guess which ones 
were machine’s creations and which ones were 
human designs. The experts could no longer 
tell, indirectly validating Chematica’s design. Of 
course, we also demonstrated direct validation 
by successfully executing Chematica’s syn-
thetic plans to three natural products shown 
in Figure 6. Although there are still some very 
complex targets Chematica cannot tackle (e.g., 

CJ – 16,264, Ryanodol or Taxol, see 11), it is gen-
erally for the lack of suitable reaction rules that 
still need to be coded and improvements in the 
computer architecture that are still required to 
handle extremely large reaction networks. Still, 
these improvements are no longer a question of 
“if” but rather of “when” and there can be little 
doubt now that the machine reached a level 
comparable to human experts.

Figure 3. The Network of Organic Chemistry, NOC. The inset on the upper-right illustrates two ways of representing a 
chemical reaction in a graph form. With only one type of molecule nodes (circles), one would have to draw arrows from 
both S1 and S2 substrates to the product, P, which is inaccurate. To reflect the fact that both substrates are needed 
for the reaction to occur, we use the so-called bipartite representation in which S1 and S2 “enter” a diamond-shaped 
node signifying a reaction operation, which then leads to P. The main image has a bipartite graph corresponding to a 
cost-optimized synthesis of Zaragozic acid A (yellow node in upper left part) found in the NOC. The NOC is a static, 
predefined network and the NOC-searching algorithm does not plan de novo synthesis – instead, it concatenates 
reactions already reported in the literature (at years indicated over reaction arrows). 

a) b)

c)

Figure 4. A growing network of synthetic options 
considered – after (a) 15, (b) 123 and (c) 541 iterations – 
during retrosynthetic analysis of a simple triarylamine (node 
indicated by yellow arrow). Figure reproduced from ref. 35
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At this point, it is perhaps wise to pause and 
ask a provocative question: Who should care 
about this accomplishment? For the sake of 
argument, one might say that no matter how 
intricate, awe-inspiring and even beautiful total 
syntheses of natural products might be, they 
are pursued by maybe few hundred research 
groups worldwide and, compared to the hey-
day of the discipline some decades ago, are 
no longer at the center stage of modern chem-
istry. Paradoxically, after having spent some 
twenty years on teaching the machine how to 
plan such syntheses, we are inclined to agree 
with this argument. While we believe that 
demonstrating total synthesis by computer 
was essential for convincing the community, 
the machine will likely have more impact when 
applied to slightly different—though still syn-
thesis-oriented – problems.

Synthesis with multiple constraints
Pondering such problems, we note that 

computer’s major advantage over human brain, 
beyond sheer speed of performing arithmetic 
operations, is the number of logical conditions it 
can handle simultaneously. Imagine a situation 
in which one seeks not just a viable synthesis of 
some non-trivial drug molecule, but also a route 
that is economical, does not involve any toxic 
intermediates or solvents (i.e., “green”), does not 
use heavy-metal catalysts (usually undesired 

in pharmaceutical synthesis, especially in the 
last steps25), and ideally does not infringe upon 
existing patents. A human performing such 
planning would have to consult quite a few 
catalogs of available starting materials, lists of 
toxic substances, and patent literature – for a 
computer, “memorizing” such lists and keeping 
track of these additional, multiple constraints 
during synthesis planning is straightforward. In 
fact, in ref 26, we showed how these capabilities 
can be used to navigate around patented routes 
and how they can be used to design economical 
and green routes leading, for instance, to several 
blockbuster drugs. In a similar genre, in very 
recent work by us27 and by Cernak’s team,28 
the imposed constraint was to avoid the key 
intermediates used in the production of antivirals 
potentially relevant in the context of the current 
COVID-19 pandemic. In this task, Chematica 
designed as many as 17 alternative routes to 
one target whereas Cernak used the program 
not only to plan alternative syntheses but also 
carried many of them in the laboratory, validat-
ing Chematica’s plans once again. In a broader 
context, the motivation for such analyses is 
that the known synthetic routes use the same 
key ingredients and these ingredients might 
rapidly become unavailable should a given drug 
candidate prove effective, triggering high world-
wide demand. Therefore, creation of “synthetic 
contingency plans,” as we called Chematica’s 

alternative routes, fits well into the strategic efforts 
of many organizations and governments to 
secure stable, risk-free supply chains of key 
pharmaceuticals.29 Of course, one might argue 
that skilled medicinal chemists might have come 
up with such alternative syntheses themselves – 
but to perform these analyses for thousands of 
other FDA approved medications would be an 
extremely tedious task. Only computers have 
the power to perform such strategic analyses at 
requisite scales.

The second type of a problem in which 
computers may outclass humans is planning 
the syntheses of many targets simultaneously, 
for example, in the synthesis of a library of 
compounds around a scaffold of interest. We 
are not taking here about syntheses planned 
one-by-one but about “global plans” that make 
use of intermediates and starting materials 
common to multiple individual pathways (the 
use of such common intermediates/substrates 
may lower the overall cost of the process). As 
described in ref 30, Chematica is quite adept 
in constructing such plans within minutes to 
hours; in the example in Figure 7 the soft-
ware’s task was to design a global synthetic 
plan leading to the synthetically most acces-
sible M+6, 13C isotopically labelled derivatives 
of ten anticoagulant rodenticides. Note how 
intricate this plan is – it looks like a small net-
work, not just a synthetic path. The problem 

Figure 6. Total syntheses of natural products planned by Chematica and validated 
in the laboratory: (a) (–)-Dauricine; (b) Tacamonidine, (c) Lammelodysidine A. Figure 
reproduced from ref. 11

Figure 5. Syntheses of high-value, medicinally relevant targets designed by Chematica 
and validated by experiment. Syntheses of (a) BRD7/9 inhibitor; (b) hydroxyetizolam; (c) 
hydroxyduloxetine; and (d) dronedarone. Experimental yields are in red font. In Chematica 
pathway miniatures: yellow nodes = targets; violet = unknown molecules; green = known 
molecules; red = commercially available chemicals; blue halos = protection needed. Figure 
reproduced with permission from ref. 16
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of library-wide design has many more rami-
fications (e.g., in ranking library members for 
the ease of synthesis, or in the selection of the 
most synthetically accessible isotopomers, for 
details see 30). These tasks definitely require 
computer’s assistance when the numbers 
of library members or the ways in which a 
compound can be multiply labelled become 
large (for details, see 30). Altogether, we are 
quite excited about computer-assisted syn-
thesis with constraints, as it can really make 
an impact on green chemistry, economical use 
and reuse (in multiple syntheses) of the same 
substrates, or even IP considerations, unlock-
ing new process routes to, e.g., generic drugs. 

Forward, not backward! 
Still, the examples discussed so far are within 

the realm of retrosynthesis and are limited in 
one fundamental aspect – namely, they pre-
suppose the knowledge of the target(s). Can 
computer-designed syntheses still be of help at 
the stage od discovering new targets with desir-
able pharmacological or other properties? The 
answer is in the affirmative provided we reverse 
the problem and instead of retro- start thinking 
in the “forward” direction. 

Synthesizable molecular spaces
In the forward synthesis process, one starts 

from a collection of some basic substrates (“gen-
eration” G0) and asks the machine to apply 
its reaction rules to generate the products of 
reactions between these substrates. This cre-
ates synthetic generation G1. Subsequently, the 
molecules from G0 and G1 are combined, and 
their possible reactions are considered, yielding 
generation G2. The process is then iteratively 

Figure 7. Example of multiple-target design. In this problem, Chematica was presented 
with ten anticoagulant rodenticides. In addition, each of these parent compounds 
(drawn in white on the bottom right) was supposed to be isotopically labelled with 
six 13C carbons – note that there are potentially many options for such labelling. The 
program was asked to find the most synthetically accessible isotopomer (“ALT” condition 
meaning one of many alternatives) for each (“AND”) parent class and “globally” optimize 
the synthetic plan to be the most economical. Note that this plan is no longer just “a 
pathway” – instead, it is a small network of pathways sharing common intermediates, 
some of which are drawn in yellow. The inexpensive sources of 13C are drawn in red (13C 
atoms are denoted by small dots). Details of this study will be published separately.

Figure 8. The network of prebiotic chemistry simulated with Allchemy. (a) The first five 
synthetic generations of a network of compounds synthesizable from CH4, NH3, H20, 
HCN, N2, and H2S. Nodes colored red correspond to biotic molecules. Three such 
biotic molecules (succinic acid, uracil and adenine) are shown along with some of their 
syntheses traced over the network. (b) Allchemy-generated and experimentally validated 
self-regenerating, prebiotic cycle. After execution of the cycle, iminodiacetic acid – the 
template molecule – is self-regenerated in 126% yield. (c) An example of a new prebiotic 
synthesis (here, of uric acid) predicted by the software and validated by experiment. For 
details, see ref.31 from which the panels (b,c) are reproduced.

applied up to some user-specified generation 
Gn. As could be expected, the numbers of vir-
tual molecules thus created increase rapidly. In 
one recently published work,31 we showed that 
when ~600 rules describing prebiotically plau-
sible reactions are applied to only six very basic 
substrates – water, ammonia, hydrogen cyanide, 
hydrogen sulfide, methane and nitrogen, all 
assumed to be present on primitive earth – they 
generate, within just few steps, a network com-
prised of tens of thousands of structurally diverse 
molecules, each of which is synthesizable (by 
definition of our construction) along one and 
usually many synthetic routes (Figure 8). 

Property mapping and new pharmaceuti-
cal leads. Once created, this “synthesizable 
molecular space” can be mapped according 
to some property of interest – in the context 
of prebiotic chemistry, an obvious choice is to 
mark molecules that are known as the building 
blocks of life (amino acids, nucleobases, nucle-
osides, carbohydrates, and metabolites found in 
living organisms; red nodes in Figure 8a). This 
simple operation immediately prompts a set of 
interesting questions: What distinguishes these 
molecules from other, unmarked ones (i.e., from 
those that were “not chosen” to become life’s 
components)? In how many ways can the life-like 
molecules be synthesized? Can they be made 
along unknown synthetic routes? Do some 
reaction sequences close into cycles, maybe 
even autocatalytic ones? For answers to these 
and other questions – and yes, for new and 
experimentally validated synthetic routes and 
cycles – the reader is referred to ref. 31 (and also 
Figure 8b,c). What concerns us here, however, 
is the uniquely enabling power of combining 
forward synthesis with property mapping – there 

is simply no way a human could generate such 
a complex maze of synthetic options, or inspect 
its contents for some property (or properties) of 
interest in a realistic time. 

Naturally, this concept has broader implica-
tions than just prebiotic analyses. The starting 
materials can be any substrates one wishes to 
use, the database of reactions can encompass 
thousands of reactions relevant to medicinal 
chemistry, and the properties mapped onto the 
network can relate to pharmacological prop-
erties. This is illustrated in the screenshot from 
our Allchemy platform in Figure 9. Within just 
n = 3 steps, eight popular building (Figure 9a) 
blocks create a synthesizable space of 3,104 
molecules (Figure 9b,c), which are then scru-
tinized by various AI “filters” (Figure 10). First, 
neural networks, NN, pre-trained on the set of 
>2,000 FDA approved drugs vs. random small 
molecules (in Figure 10a, menu panel circled in 
green) are used to determine which of the mole-
cules within the space are “drug-like”32 – that is, 
have general structural features characteristic of 
drugs. Second, other NNs are used to filter out 
molecules that have features indicative of specific 
toxicity modalities (Figure 10a, panel circled 
in yellow). After application of these two filters, 
our molecular synthesizable space is reduced 
– within just seconds of analysis – by ca. 65%, 
to 1,103 molecules that “look” like drugs and are 
predicted to be non-toxic. Some of these mole-
cules are shown in the main “window” in Figure 
10a. At this stage, we may become interested is 
specifics – for instance, which of these molecules 
might bind to particular protein targets of interest. 
Another neural network comes into play – this 
time, the network is trained on ca. 2 million bind-
ing assays describing binding of various small 
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Figure 9. Creation of synthesizable spaces. Eight simple starting materials shown in 
(a) produce a space of 3104 molecules synthesizable within three synthetic steps. 
The entire process took 4 min on a standard multicore desktop. In (b), fraction of this 
space is visualized as a list. In (c), it is shown as a network. Red nodes correspond to 
molecules that are either known drugs or are similar to these known drugs (at a certain, 
user-specified level). The connections highlighted trace syntheses to two of these drug-
similars (see also Figure 10). Some intermediates along the synthetic route are also 
shown. Images are screenshots from the Allchemy platform. 

Figure 10. Evaluation of synthesizable drug candidates. In (a,b), the panels on the left highlight 
menus for various AI filters – general drug-likeness (in green halo), toxicity (yellow), and binding 
or not binding to some protein target(s) of interest (violet). Molecules surviving after each 
modality of filtering are shown in the main window to the right. Orange dots indicate molecules 
already reported in patents or high-impact publications. In (b), the eleven molecules shown are 
predicted to bind to serotonin receptor 5-HT1D but not to μ or δ opioid receptors. Molecule 
indicated by the crimson red arrow is Rizatriptan, an approved medication for acute migraine. 
Syntheses for this or any other molecule analyzed are available by clicking on the structure of 
interest. Upon doing so, plans such as those in (c) are displayed. Images are screenshots from 
the Allchemy platform.

molecules to several thousand protein targets. 
This network is taught which structural features 
in a molecule are indicative of binding (or its 
lack) to specific proteins. In Figure 10b, panel 
circled in violet is used to specify our targets of 
interest and also those to which our candidate 
molecules should not bind; in addition, we can 
set the threshold of certainty with which these 
predictions are to be made (the more certainty, 
the more stringent the network’s criteria and the 
smaller the number of molecules that will pass 
filtering). Say, we decided to narrow our molecu-
lar space – with high certainty – to molecules the 
network predicts to bind to serotonin 5-HT1D 
receptor but not to opioid receptors μ or δ. 
This is a realistic scenario if we were looking for 
potential anti-migraine drugs that would not be 
addictive via interaction to the opioid receptor. 
After few seconds, the network examines our 
molecular space, and finds 11 molecules that 
meet our criteria, ranking them according to the 
predicted binding to serotonin 5-HT1D receptor 
(main panel of Figure 10b). Among these top 
top-ranking candidates, there is one already 
known and approved migraine medication 
Rizatriptan (which is reassuring) but there are 
also many completely new structures. Clicking 

on any of them, provides a synthetic route (and 
sometimes many routes) by which Allchemy 
generated this molecule (Figure 10c). All in all, 
the full cycle of in silico synthesis and property 
prediction for thousands of candidate mole-
cules took less than five minutes yielding plausi-
ble leads worthy of further scrutiny and perhaps 
even wet lab synthesis and assaying. There is 
simply no way a human chemist or even a group 
of chemists could beat such timelines.

As in the case of retrosynthesis with con-
straints, additional conditions for forward syn-
thesis and/or subsequent filtering can easily be 
envisioned and applied. In Allchemy, synthetic 
constraints can be, for instance, to use only 
green reaction conditions, or to start with a 
certain molecular fragment and perform only 
those reactions that make molecules increas-
ingly similar to a given target of interest. By the 
very nature of our forward-synthesis approach, 
“similars” thus created are always synthesiza-
ble which is not the case for many AI methods 
that can create molecules that are similar but 
hard or impossible to make.33 In terms of filter-
ing, for reasons beyond this short article, we 
are mostly interested in heats of formation and 
some optical properties, but any property that 

can be calculated on the basis of molecular 
structure can be added. 

The new brave world (of 
computerized synthesis)!

The limited space of this article does not allow 
us to narrate all these applications in detail. But, 
we hope, that even this short discussion will 
serve to convince the readers that synthetic 
chemistry has entered a new era. The com-
puter-generated syntheses can be now trusted 
in terms of quality and can be generated on 
scales previously not thought possible. This 
newly acquired capability will have tremendous 
impact on the way we make molecules – before 
we synthesize them in the laboratory, we will 
be able to scrutinize many diverse synthetic 
plans generated on short times. Computers 
will provide us with suggestions for more eco-
nomical and more green pathways. We will be 
able to create synthesizable molecular spaces 
of breathtaking sizes and will find in them read-
ily-makeable molecules that are likely to have 
properties we desire. Synthetic planning will 
be accelerated and more property-oriented. 
Of course, we the humans will still be needed 
to execute these synthesis plans (but watch 

c)
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b)

Rizatriptan

a)
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out, Chemputers34 might be coming!) and will 
definitely be needed to create new synthetic 
methodologies the machines will then learn and 
incorporate into their planning. One thing is for 
sure: Chemistry at large can only benefit from 
these exciting human-machine synergies that 
are now emerging. 
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